Presentation is loading. Please wait.

Presentation is loading. Please wait.

Warm Up Write answers in reduced pi form.

Similar presentations


Presentation on theme: "Warm Up Write answers in reduced pi form."β€” Presentation transcript:

1 Warm Up Write answers in reduced pi form.
Convert 8πœ‹ 9 to degrees Convert -2560̊ to radians Find the arc length The square has side lengths 14. The two curves are each of a circle with radius 14. Find the area of the shaded region. πŸ—πŸ–π…βˆ’πŸπŸ—πŸ”

2 Section 7-3 The Sine and Cosine Functions
Objective: To use the definitions of sine and cosine to find values of these functions and to solve simple trigonometric equations.

3 π‘ π‘–π‘›πœƒ= π‘œπ‘π‘ β„Žπ‘¦π‘ = 𝑦 π‘Ÿ r  π‘Žπ‘‘π‘— β„Žπ‘¦π‘ = π‘₯ π‘Ÿ cos πœƒ=

4 Example 1 If the terminal ray of an angle ΞΈ in standard position passes through (-3, 2), find sin ΞΈ and cos ΞΈ. Solution: On a grid, locate (-3,2). Use this point to draw a right triangle, where one side is on the x-axis, and the hypotenuse is line segment between (-3,2) and (0,0). Start of Day 2

5 π‘Ÿ= βˆ’3 2 + 2 2 𝒙=βˆ’πŸ‘ 𝒓= πŸπŸ‘ 𝐲=𝟐 = 2 13 13 = 2 13 π‘ π‘–π‘›πœƒ= 𝑦 π‘Ÿ = βˆ’3 13 13
= = π‘ π‘–π‘›πœƒ= 𝑦 π‘Ÿ = βˆ’ = βˆ’3 13 π‘π‘œπ‘ πœƒ= π‘₯ π‘Ÿ π‘Ÿ= βˆ’ 𝒙=βˆ’πŸ‘ 𝒓= πŸπŸ‘ 𝐲=𝟐

6 Example 2 If the π‘ π‘–π‘›πœƒ=βˆ’ 5 13 , what quadrant is the angle in?

7 = 12 13 π‘π‘œπ‘ πœƒ= π‘₯ π‘Ÿ 𝐲=βˆ’πŸ“ 𝒓=πŸπŸ‘ π‘₯= βˆ’ βˆ’5 2 𝒙=𝟏𝟐 𝒙=±𝟏𝟐 4th Quadrant, so

8 π‘ π‘–π‘›πœƒ= cos πœƒ= 𝑦 π‘Ÿ π‘₯ π‘Ÿ π‘œπ‘π‘ β„Žπ‘¦π‘ = π‘Žπ‘‘π‘— β„Žπ‘¦π‘ =
r  π‘Žπ‘‘π‘— β„Žπ‘¦π‘ = π‘₯ π‘Ÿ cos πœƒ= When the radius =1 on the unit circle, π‘ π‘–π‘›πœƒ= 𝑦 1 =𝑦 π‘π‘œπ‘ πœƒ= π‘₯ 1 =π‘₯

9 Unit Circle The circle x2 + y2 = 1 has radius 1 and is therefore called the unit circle. This circle is the easiest one with which to work because sin ΞΈ and cos ΞΈ are simply the y- and x-coordinates of the point where the terminal ray of ΞΈ intersects the circle. When the radius =1 on the unit circle, π‘ π‘–π‘›πœƒ= 𝑦 1 =𝑦 π‘π‘œπ‘ πœƒ= π‘₯ 1 =π‘₯

10 1 1 2 1 2

11 II I III IV (βˆ’,+) (+,+) (βˆ’,βˆ’) (+,βˆ’) On Your Unit Circle:
Label the quadrants. Note the positive or negative x and y values in each quadrant. (cos, sin) (cos, sin) (βˆ’,+) (+,+) II I III IV (βˆ’,βˆ’) (+,βˆ’) (cos, sin) (cos, sin)

12 You can determine the exact value of sine and cosine for many angles on the unit circle.
1 -1 βˆ’ 2 2 Find: sin 90Β° sin 450Β° cos (-Ο€) sin (βˆ’ 2πœ‹ 3 ) cos -315Β° Refer to graph file β€œUC Quadrantal Angles”

13 Example 3 Solve sin ΞΈ = 1 for ΞΈ in degrees and radians.

14 Multiple solutions to trig equations

15 Expressing multiple solutions to trig equations
Degrees: πœƒ=90˚±360𝑛 πœƒ= πœ‹ 2 Β±2π‘›πœ‹ Radians: Where n can be any integer value

16 Repeating Sin and Cos Values
For any integer n, 𝑠𝑖𝑛 (πœƒ Β± 360°𝑛) = π‘ π‘–π‘›β‘πœƒ π‘π‘œπ‘  (πœƒ Β± 360°𝑛) =π‘π‘œπ‘ β‘πœƒ 𝑠𝑖𝑛 (πœƒ Β±2πœ‹π‘›) = π‘ π‘–π‘›β‘πœƒ π‘π‘œπ‘  (πœƒ Β±2πœ‹π‘›) =π‘π‘œπ‘ β‘πœƒ The sine and cosine functions are periodic. They have a fundamental period of 360˚ or 2 radians.

17 In-class practice part 1
P271 class exercises 1-9

18 Section 7-4 Evaluating & Graphing Sine and Cosine
Objective: To use reference angles and the unit circle to find values of the sine and cosine functions.

19 The reference angle is always less than 90˚
The smallest angle that the terminal side of a given angle makes with the x-axis. The reference angle is always less than 90˚

20 Reference Angles 60 ̊ Locate 5πœ‹ 4 on your unit circle. 𝝅 πŸ’
How far is 5πœ‹ 4 from the x-axis? 𝝅 πŸ’ is the reference angle. Locate -240 ̊on your unit circle. How far is -240 ̊from the x-axis? 60 ̊ 60 ̊ is the reference angle.

21 Finding the reference angle, , for angle 𝜽.
0<𝜽< 360˚(2πœ‹) 𝜽   𝜽 Quadrant I: =𝜽 𝜽 𝜽 Quadrant II: =πŸπŸ–πŸŽβˆ’πœ½ =π…βˆ’πœ½   Quadrant III: =πœ½βˆ’πŸπŸ–πŸŽ =πœ½βˆ’π… Quadrant IV: =πŸ‘πŸ”πŸŽβˆ’πœ½ =πŸπ…βˆ’πœ½

22 Reference Angle,  The reference angle for 60˚ is 60˚

23 Reference Angle,  The reference angle for 240˚ is 60˚

24 The reference angle is measured from the terminal side of the original angle to theΒ x-axis (not theΒ y-axis).

25 30˚ 150˚ 210˚ 330˚ Name 4 angles between 0˚ and 360˚ that have a
reference angle of 30˚. 150˚ 30˚ 210˚ 330˚

26 Draw each angle, then Find the reference angle
Reference Angles 𝟎<𝜢< 𝝅 𝟐 Draw each angle, then Find the reference angle Β° 2. βˆ’37Β° Β° 4. βˆ’155Β° 5. βˆ’350Β° 6. βˆ’543Β° πœ‹ βˆ’ 7πœ‹ πœ‹ 6 πœ‹ πœ‹ βˆ’ πœ‹ 4 24Β° 37Β° 48.4Β° 25Β° 10Β° 3Β° 𝝅 πŸ‘ 𝝅 πŸ” 𝝅 πŸ” 𝝅 πŸ’ 𝝅 πŸ‘ 𝝅 πŸ’

27 Classwork In class practice part II
Section 7.3 & 7.4 Practice Worksheet

28 Homework Suggested practice problems
7.3: p272: 1-19all, odd this is a lot of problems, but they are almost all, answer with the unit circle. 7.4: p278: 1-17odd


Download ppt "Warm Up Write answers in reduced pi form."

Similar presentations


Ads by Google