Presentation is loading. Please wait.

Presentation is loading. Please wait.

19, Yangjae-daero 11gil, Seocho-gu, Seoul , Korea

Similar presentations


Presentation on theme: "19, Yangjae-daero 11gil, Seocho-gu, Seoul , Korea"— Presentation transcript:

1 19, Yangjae-daero 11gil, Seocho-gu, Seoul 137-130, Korea
Month Year doc.: IEEE yy/xxxxr0 November 2015 HE-STF Sequences Date: Authors: Name Affiliation Address Phone Eunsung Park LG Electronics 19, Yangjae-daero 11gil, Seocho-gu, Seoul , Korea Jinsoo Choi Jinyoung Chun Dongguk Lim Jinmin Kim Kiseon Ryu Jeongki Kim Suhwook Kim JayH Park HanGyu Cho Eunsung Park, LG Electronics John Doe, Some Company

2 2111 NE 25th Ave, Hillsboro OR 97124, USA
November 2015 Authors (continued) Name Affiliation Address Phone Ron Porat Broadcom Sriram Venkateswaran Matthew Fischer Leo Montreuil Andrew Blanksby Vinko Erceg Robert Stacey Intel 2111 NE 25th Ave, Hillsboro OR 97124, USA      Shahrnaz Azizi Po-Kai Huang Qinghua Li Xiaogang Chen Chitto Ghosh Laurent Cariou Yaron Alpert Assaf Gurevitz Ilan Sutskover Eunsung Park, LG Electronics

3 Authors (continued) November 2015 Hongyuan Zhang Marvell
Name Affiliation Address Phone Hongyuan Zhang Marvell 5488 Marvell Lane, Santa Clara, CA, 95054 Yakun Sun Lei Wang Liwen Chu Jinjing Jiang Yan Zhang Rui Cao Sudhir Srinivasa Bo Yu Saga Tamhane Mao Yu Xiayu Zheng Christian Berger Niranjan Grandhe Hui-Ling Lou Eunsung Park, LG Electronics

4 Authors (continued) November 2015 Alice Chen Albert Van Zelst
Name Affiliation Address Phone Alice Chen Qualcomm 5775 Morehouse Dr. San Diego, CA, USA Albert Van Zelst Straatweg 66-S Breukelen, 3621 BR Netherlands Alfred Asterjadhi Arjun Bharadwaj Bin Tian Carlos Aldana 1700 Technology Drive San Jose, CA 95110, USA George Cherian Gwendolyn Barriac Hemanth Sampath Lin Yang Menzo Wentink Naveen Kakani 2100 Lakeside Boulevard Suite 475, Richardson TX 75082, USA Raja Banerjea 1060 Rincon Circle San Jose CA 95131, USA Richard Van Nee Eunsung Park, LG Electronics

5 Authors (continued) November 2015 Rolf De Vegt Sameer Vermani Qualcomm
Name Affiliation Address Phone Rolf De Vegt Qualcomm 1700 Technology Drive San Jose, CA 95110, USA Sameer Vermani 5775 Morehouse Dr. San Diego, CA, USA Simone Merlin Tao Tian Tevfik Yucek   VK Jones Youhan Kim Eunsung Park, LG Electronics

6 Authors (continued) November 2015 James Yee Mediatek
Name Affiliation Address Phone James Yee Mediatek No. 1 Dusing 1st Road, Hsinchu, Taiwan   Alan Jauh Chingwa Hu Frank Hsu Thomas Pare USA 2860 Junction Ave, San Jose, CA 95134, USA ChaoChun Wang James Wang Jianhan Liu Tianyu Wu Zhou Lan Russell Huang Joonsuk Kim Apple Aon Mujtaba   Guoqing Li Eric Wong Chris Hartman Eunsung Park, LG Electronics

7 Authors (continued) November 2015 Peter Loc Le Liu Jun Luo Yi Luo
Name Affiliation Address Phone Peter Loc Huawei Le Liu F1-17, Huawei Base, Bantian, Shenzhen Jun Luo 5B-N8, No.2222 Xinjinqiao Road, Pudong, Shanghai Yi Luo Yingpei Lin Jiyong Pang Zhigang Rong 10180 Telesis Court, Suite 365, San Diego, CA  NA Rob Sun 303 Terry Fox, Suite 400 Kanata, Ottawa, Canada David X. Yang Yunsong Yang Junghoon Suh Jiayin Zhang Edward Au Teyan Chen Yunbo Li Eunsung Park, LG Electronics

8 Authors (continued) November 2015 Fei Tong Hyunjeong Kang Samsung
Name Affiliation Address Phone Fei Tong Samsung Innovation Park, Cambridge CB4 0DS (U.K.) Hyunjeong Kang Maetan 3-dong; Yongtong-Gu Suwon; South Korea Kaushik Josiam 1301, E. Lookout Dr, Richardson TX 75070 (972) Mark Rison Rakesh Taori (972) Sanghyun Chang Yasushi Takatori NTT 1-1 Hikari-no-oka, Yokosuka, Kanagawa Japan Yasuhiko Inoue Shoko Shinohara Yusuke Asai Koichi Ishihara Junichi Iwatani Akira Yamada NTT DOCOMO 3-6, Hikarinooka, Yokosuka-shi, Kanagawa, , Japan Fujio Watanabe 3240 Hillview Ave, Palo Alto, CA 94304 Haralabos Papadopoulos Eunsung Park, LG Electronics

9 #9 Wuxingduan, Xifeng Rd., Xi'an, China
November 2015 Authors (continued) Name Affiliation Address Phone Yuichi Morioka Sony Corporation 1-7-1 Konan  Minato-ku, Tokyo , Japan  Masahito Mori Yusuke Tanaka Kazuyuki Sakoda William Carney Thomas Derham Orange Bo Sun ZTE #9 Wuxingduan, Xifeng Rd., Xi'an, China Kaiying Lv Yonggang Fang Ke Yao Weimin Xing Brian Hart Cisco Systems 170 W Tasman Dr, San Jose, CA 95134 Pooya Monajemi Eunsung Park, LG Electronics

10 November 2015 Overview Based on agreed 1x and 2x FFT size for HE-STF [1], this contribution discusses how to design HE-STF sequence for 11ax In this contribution, we build up HE-STF sequences by combining some extra values for additional usable tones and M sequence which can yield low PAPR All proposed sequences consist of binary values Also, the proposed HE-STF sequences have a nested structure, and thus those maintain similarities among 20, 40, 80MHz Extra values and coefficients of each M sequence are optimized in terms of the PAPR While we only consider the PAPR of the entire band for 1x HE-STF (i.e. 0.8us time period), we take into account the PAPRs of all resource units of OFDMA for 2x HE-STF (i.e. 1.6us time period) Note that PAPR is always calculated by applying 4x FFT sample rate in this contribution Eunsung Park, LG Electronics

11 HE-STF Sequence for 0.8us Periodicity (1/3)
November 2015 HE-STF Sequence for 0.8us Periodicity (1/3) HE-STF sequence building procedure for 0.8us Periodicity M sequence is defined in the next page Candidates of a and c :{1, -1} 20MHz {M} 20MHz {c1M} 40MHz {M, 0, M} 40MHz {c2M, 0, c3M} 80MHz {M, 0, M, 0, M, 0, M} 80MHz {c4M, a1, c5M, 0, c6M, a2, c7M} Extra value Extra value 1. Repeat the structure 2. Put extra values and coefficients and optimize those values Eunsung Park, LG Electronics

12 HE-STF Sequence for 0.8us Periodicity (2/3)
November 2015 HE-STF Sequence for 0.8us Periodicity (2/3) The coefficients and extra values have been selected in such a way that the PAPR of the entire band is minimized M sequence is defined as follows M = { } 20MHz HES-112,112(-112:16:112) = M *(1+j)*sqrt(1/2) HES-112,112(0) = 0 40MHz HES-240,240(-240:16:240) = {M, 0, -M} *(1+j)*sqrt(1/2) 80MHz HES-496,496(-496:16:496) = {M, 1, -M, 0, -M, 1, -M} *(1+j)*sqrt(1/2) Eunsung Park, LG Electronics

13 HE-STF Sequence for 0.8us Periodicity (3/3)
November 2015 HE-STF Sequence for 0.8us Periodicity (3/3) PAPR [dB] In 20MHz and 40MHz, the proposed sequences have lower PAPR than those of 11ac Also, even in 80MHz, the PAPR of the proposed sequence is comparable PAPR 20MHz 40MHz 80MHz 11ac 2.24 5.25 4.35 Proposed 1.89 4.40 4.53 Eunsung Park, LG Electronics

14 HE-STF Sequence for 1.6us Periodicity (1/7)
November 2015 HE-STF Sequence for 1.6us Periodicity (1/7) HE-STF sequence building procedure for 1.6us Periodicity 20MHz {M, 0, M} 40MHz {M, 0, M, 0, M, 0, M} 80MHz {M, 0, M, 0, M, 0, M, 0, M, 0, M, 0, M, 0, M} 1. Repeat the structure 20MHz {c1M, 0, c2M} {c3M, a1, c4M, 0, c5M, a2, c6M} 40MHz 80MHz {c7M, a3, c8M, a4, c9M, a5, c10M, 0, c11M, a6, c12M, a7, c13M, a8, c14M} 2. Put extra values and coefficients and optimize those values Eunsung Park, LG Electronics

15 HE-STF Sequence for 1.6us Periodicity (2/7)
November 2015 HE-STF Sequence for 1.6us Periodicity (2/7) The coefficients and extra values have been selected in such a way that based on the agreed OFDMA tone plan [1], the worst PAPR among all PAPRs of resource units is minimized In order to check the PAPRs of all resource units, we have considered the UL OFDMA where each user occupies only one resource unit 20MHz HES-120,120(-120:8:120) = {M, 0 , -M} *(1+j)*sqrt(1/2) 40MHz HES-248,248(-248:8:248) = {M, -1, -M, 0, M, -1, M} *(1+j)*sqrt(1/2) HES-248,248(±248) = 0 80MHz HES-504,504 (-504:8:504) = {M, -1, M, -1, -M, -1, M, 0, -M, 1, M, 1, -M, 1, -M} *(1+j)*sqrt(1/2) HES-504,504(±504) = 0 Eunsung Park, LG Electronics

16 HE-STF Sequence for 1.6us Periodicity (3/7)
November 2015 HE-STF Sequence for 1.6us Periodicity (3/7) PAPR [dB] Assuming UL OFDMA, we have checked PAPR in all resource units with agreed tone plans 20MHz 2.48 2.22 4.77 1.93 4.79 4.26 4.37 4.40 7 DC 26 52 DC 102+4 pilots 1 13 5 Edge 6 Edge Eunsung Park, LG Electronics

17 HE-STF Sequence for 1.6us Periodicity (4/7)
November 2015 HE-STF Sequence for 1.6us Periodicity (4/7) PAPR [dB] (cont.) 40MHz 12 Edge 11 Edge 5 DC D C 242 26 102+4 52 1 2 2.22 2.48 4.77 2.90 4.52 4.26 5.21 5.39 4.39 5.46 5.48 5.22 Eunsung Park, LG Electronics

18 HE-STF Sequence for 1.6us Periodicity (5/7)
November 2015 HE-STF Sequence for 1.6us Periodicity (5/7) PAPR [dB] (cont.) 80MHz 12 Edge 13 11 Edge 7 DC 996 usable tones +5 DC 242 26 52 102+4 2 1 Eunsung Park, LG Electronics

19 HE-STF Sequence for 1.6us Periodicity (6/7)
November 2015 HE-STF Sequence for 1.6us Periodicity (6/7) PAPR [dB] (cont.) 80MHz (cont.) PAPRs of left hand side 26 2.22 2.48 4.77 2.90 4.52 4.26 5.21 4.80 3.85 5.39 4.39 5.40 5.50 5.61 4.79 52 106 242 484 Eunsung Park, LG Electronics

20 HE-STF Sequence for 1.6us Periodicity (7/7)
November 2015 HE-STF Sequence for 1.6us Periodicity (7/7) PAPR [dB] (cont.) 80MHz (cont.) PAPRs of right hand side PAPR of center 26 tone RU is 1.94 PAPR of entire band is 5.77 26 2.22 4.77 2.48 4.26 4.80 3.85 5.21 4.52 2.90 4.39 5.40 5.39 5.61 5.50 4.79 52 106 242 484 Eunsung Park, LG Electronics

21 Summary The proposed sequences use binary signaling as in 11ac
November 2015 Summary We have proposed HE-STF sequences for 0.8us and 1.6us periodicity For building up HE-STF sequences, we have simply applied the nested structure and put some extra values and coefficients HE-STF sequences for 0.8us periodicity have been optimized in terms of the PAPR of the entire band Based on the OFDMA tone plan, HE-STF sequences for 1.6us periodicity which minimize the worst PAPR have been determined The proposed sequences use binary signaling as in 11ac In terms of PAPR, the proposed sequences are not bottle-necks compared to the data part as shown in appendix Eunsung Park, LG Electronics

22 November 2015 Straw poll Do you agree to add the following HE-STF sequences for 0.8us and 1.6us periodicity to the 11ax SFD: M = { } 1x HE-STF sequences 20MHz HES-112,112(-112:16:112) = M *(1+j)*sqrt(1/2) HES-112,112(0) = 0 40MHz HES-240,240(-240:16:240) = {M, 0, -M} *(1+j)*sqrt(1/2) 80MHz HES-496,496(-496:16:496) = {M, 1, -M, 0, -M, 1, -M} *(1+j)*sqrt(1/2) 2x HE-STF sequences HES-120,120(-120:8:120) = {M, 0 , -M} *(1+j)*sqrt(1/2) HES-248,248(-248:8:248) = {M, -1, -M, 0, M, -1, M} *(1+j)*sqrt(1/2) HES-248,248(±248) = 0 HES-504,504 (-504:8:504) = {M, -1, M, -1, -M, -1, M, 0, -M, 1, M, 1, -M, 1, -M} *(1+j)*sqrt(1/2) HES-504,504(±504) = 0 Eunsung Park, LG Electronics

23 References [1] 11-15-0132-09-00ax-spec-framework November 2015
Eunsung Park, LG Electronics

24 November 2015 Appendix Eunsung Park, LG Electronics

25 PAPR comparison between Data and 2x HE-STF
November 2015 PAPR comparison between Data and 2x HE-STF The CDF for the data and 2x HE-STF PAPR in UL OFDMA with the tone plan described in slide 8-10 will be shown in the next three slides We obtain the PAPR assuming each user occupies only one resource unit As shown in slide 8-10, possible resource units (max tone units are just for checking on entire band) are Nine 26, four 52, two 106 and one 242 tone units in 20MHz Eighteen 26, eight 52, four 106, two 242 and one 484 tone units in 40MHz Thirty-seven 26, sixteen 52, eight 106, four 242, two 484 and one 994 tone units in 80MHz Then, we aggregate PAPR results of all possible resource units for each bandwidth and plot the CDF Eunsung Park, LG Electronics

26 November 2015 PAPR Comparison - 20MHz Eunsung Park, LG Electronics

27 November 2015 PAPR Comparison - 40MHz Eunsung Park, LG Electronics

28 November 2015 PAPR Comparison - 80MHz Eunsung Park, LG Electronics


Download ppt "19, Yangjae-daero 11gil, Seocho-gu, Seoul , Korea"

Similar presentations


Ads by Google