Download presentation
Presentation is loading. Please wait.
1
Simplifying Exponents
Ms. Olifer
2
Multiplication Properties of Exponents
SWBAT: simplify exponential expression using: Product of Powers Property Power of a Power Property Power of a Product Property
3
Product of Powers Property
To multiply powers that have the same base, you add the exponents. Example:
4
Practice Product of Powers Property:
Try:
5
Power of a Power Property
To find a power of a power, you multiply the exponents. Example: Therefore,
6
Practice Using the Power of a Power Property
Try:
7
Power of a Product Property
To find a power of a product, find the power of EACH factor and multiply. Example:
8
Practice Power of a Product Property
Try:
9
Review Multiplication Properties of Exponents
Product of Powers Property—To multiply powers that have the same base, ADD the exponents. Power of a Power Property—To find a power of a power, multiply the exponents. Power of a Product Property—To find a power of a product, find the power of each factor and multiply.
10
Zero Exponents Any number, besides zero, to the zero power is 1.
Example:
11
Negative Exponents To make a negative exponent a positive exponent, write it as its reciprocal. In other words, when faced with a negative exponent—make it happy by “flipping” it.
12
Negative Exponent Examples
Example of Negative Exponent in the Numerator: The negative exponent is in the numerator—to make it positive, I “flipped” it to the denominator.
13
Negative Exponents Example
Negative Exponent in the Denominator: The negative exponent is in the denominator, so I “flipped” it to the numerator to make the exponent positive.
14
Practice Making Negative Exponents Positive
Try:
15
Answers to Negative Exponents Practice
16
Rewrite the Expression with Positive Exponents
Example: Look at EACH factor and decide if the factor belongs in the numerator or denominator. All three factors are in the numerator. The 2 has a positive exponent, so it remains in the numerator, the x has a negative exponent, so we “flip” it to the denominator. The y has a negative exponent, so we “flip” it to the denominator.
17
Rewrite the Expression with Positive Exponents
Example: All the factors are in the numerator. Now look at each factor and decide if the exponent is positive or negative. If the exponent is negative, we will flip the factor to make the exponent positive.
18
Rewriting the Expression with Positive Exponents
Example: The 4 has a negative exponent so to make the exponent positive—flip it to the denominator. The exponent of a is 1, and the exponent of b is 3—both positive exponents, so they will remain in the numerator. The exponent of c is negative so we will flip c from the numerator to the denominator to make the exponent positive.
19
Practice Rewriting the Expressions with Positive Exponents:
Try:
20
Answers Answer
21
Division Properties of Exponents
Quotient of Powers Property Power of a Quotient Property
22
Quotient of Powers Property
To divide powers that have the same base, subtract the exponents. Example:
23
Practice Quotient of Powers Property
Try:
24
Answers Answer:
25
Power of a Quotient Property
To find a power of a quotient, find the power of the numerator and the power of the denominator and divide. Example:
26
Simplifying Expressions
27
Simplifying Expressions
First use the Power of a Quotient Property along with the Power of a Power Property
28
Simplify Expressions Now use the Quotient of Power Property
29
Simplify Expressions Simplify
30
Steps to Simplifying Expressions
Power of a Quotient Property along with Power of a Power Property to remove parenthesis “Flip” negative exponents to make them positive exponents Use Product of Powers Property Use the Quotient of Powers Property
31
Power of a Quotient Property and Power of a Power Property
Use the power of a quotient property to remove parenthesis and since the expression has a power to a power, use the power of a power property.
32
Continued Simplify powers
33
“Flip” Negative Exponents to make Positive Exponents
Now make all of the exponents positive by looking at each factor and deciding if they belong in the numerator or denominator.
34
Product of Powers Property
Now use the product of powers property to simplify the variables.
35
Quotient of Powers Property
Now use the Quotient of Powers Property to simplify.
36
Simplify the Expression
37
Step 1: Power of a Quotient Property and Power of a Power Property
38
Step 2: “Flip” Negative Exponents
39
Step 3: Product of Powers Property
40
Step 4: Quotient of Powers Property
41
Simplifying Expressions
Given Step 1: Power of a Quotient Property
42
Power of Quotient Property
Result after Step 1: Step 2: Flip Negative Exponents
43
“Flip” Negative Exponents
Step 3: Make one large Fraction by using the product of Powers Property
44
Make one Fraction by Using Product of Powers Property
45
Use Quotient of Powers Property
46
Simplify the Expressions
Try:
47
Answers Answer:
48
Scientific Notation Scientific Notation uses powers of ten to express decimal numbers. For example: The positive exponent means that you move the decimal to the right 5 times. So,
49
Scientific Notation If the exponent of 10 is negative, you move the decimal to the left the amount of the exponent. Example:
50
Practice Scientific Notation
Write the number in decimal form: 1. 2.
51
Answers 1. 2.
52
Write a Number in Scientific Notation
To write a number in scientific notation, move the decimal to make a number between 1 and 9. Multiply by 10 and write the exponent as the number of places you moved the decimal. A positive exponent represents a number larger than 1 and a negative exponent represents a number smaller than 1.
53
Example of Writing a Number in Scientific Notation
Write 88,000,000 in scientific notation First place the decimal to make a number between 1 and 9. Count the number of places you moved the decimal. Write the number as a product of the decimal and 10 with an exponent that represents the number of decimal places you moved. Positive exponent represents a number larger than 1.
54
Write 0.0422 in Scientific Notation
Move the decimal to make a number between 1 and 9 – between the 4 and 2 Write the number as a product of the number you made and 10 to a power 4.2 X 10 Now the exponent represents the number of places you moved the decimal, we moved the decimal 2 times. Since the number is less than 1 the exponent is negative.
55
Operations with Scientific Notation
For example: Multiply 2.3 and 1.8 = 4.14 Use the product of powers property Write in scientific notation
56
Try These: Write in scientific notation 1. 2.
57
Answers 1. 2.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.