Download presentation
Presentation is loading. Please wait.
1
Python-NumPy Tutorial
CIS 581
2
Intro to NumPy A Python-based Matlab-style library for scientific calculation Uses array as basic operation units For MATLAB Users: Array -- Matrix Indexing & Slicing Row Major -- Column Major
3
NumPy Arrays A NumPy array is a grid of values, all of the same type. The shape of an array is a tuple of integers giving the size of array along each dimension Creating arrays: np.array([]) np.zeros, np.ones, np.full, np.eye, np.empty, … np.arange np.random Code
4
Datatypes Some functions require specific datatypes to run properly
np.uint8 -- for most images, .png, .jpg, etc. np.int16/32/64 -- integers of different bits length np.float16/32/64 -- floats of different bits length np.bool -- boolean value Manipulation: Code
5
Slicing Python indexing starts from 0
Slicing a[0:i] will have a[i] excluded Default in slicing Minus value in slicing Use a[0, :] and a[0, …] to omit other axis Use bool value as index Code
6
Element-wise functions
+, -, *, /, &, | np.cos, np.sin, np.tan, np.radians, np.angles np.acos, np.asin, np.atan, np.atan2 np.round, np.ceil, np.floor np.cumsum np.log, np.log2, np.log10, np.exp np.bitwise_and, np.bitwise_or
7
Shape and broadcasting
Most numpy functions has shape constraints for inputs (e.g., input element must equal for most element-wise functions) Use np.reshape() to manipulate the shape Broadcasting NumPy will automatically repeat array to meet shape requirements Start from the last dimension, must fulfill basic rules
8
Other important functions
np.sum, np.mean, np.std, np.max, np.min axis, keep_dims np.sort, np.argsort np.where np.linalg Linear algebra module np.random Generate random variables
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.