Download presentation
Presentation is loading. Please wait.
1
Space-Efficient Gradual Typing
David Herman Northeastern University Aaron Tomb, Cormac Flanagan University of California, Santa Cruz
2
The point Naïve type conversions in functional programming languages are not safe for space. But they can and should be.
3
Software evolution via hybrid type checking
Gradual Typing: Software evolution via hybrid type checking
4
Dynamic vs. static typing
5
Gradual typing Dynamic Typing Static Typing
6
Type checking let x = f() in … let y : Int = x - 3 in …
7
Type checking let x : ? = f() in … let y : Int = x - 3 in …
8
Type checking let x : ? = f() in … let y : Int = x - 3 in …
- : Int × Int → Int
9
Type checking let x : ? = f() in … let y : Int = <Int>x - 3 in …
10
Type checking let x : ? = f() in … let y : Int = <Int>x - 3 in …
11
Evaluation let x : ? = f() in … let y : Int = <Int>x - 3 in …
12
Evaluation let x : ? = 45 in … let y : Int = <Int>x - 3 in …
13
Evaluation let y : Int = <Int> in …
14
Evaluation let y : Int = in …
15
Evaluation let y : Int = 42 in …
16
Evaluation (take 2) let x : ? = f() in … let y : Int = <Int>x - 3 in …
17
Evaluation (take 2) let x : ? = true in … let y : Int = <Int>x - 3 in …
18
Evaluation (take 2) let y : Int = <Int>true - 3 in …
19
error: “true is not an Int”
Evaluation (take 2) error: “true is not an Int”
20
Space Leaks
21
Space leaks fun even(n) = if (n = 0) then true else odd(n - 1)
fun odd(n) = if (n = 0) then false else even(n - 1)
22
Space leaks fun even(n : Int) = if (n = 0) then true else odd(n - 1)
fun odd(n : Int) : Bool = if (n = 0) then false else even(n - 1)
23
Space leaks fun even(n : Int) = if (n = 0) then true else odd(n - 1)
fun odd(n : Int) : Bool = if (n = 0) then false else <Bool>even(n - 1)
24
Space leaks fun even(n : Int) = if (n = 0) then true else odd(n - 1)
fun odd(n : Int) : Bool = if (n = 0) then false else <Bool>even(n - 1) non-tail call!
25
x Space leaks even(n) →* odd(n - 1) →* <Bool>even(n - 2)
→* <Bool>odd(n - 3) →* <Bool><Bool>even(n - 4) →* <Bool><Bool>odd(n - 5) →* <Bool><Bool><Bool>even(n - 6) →* … x
26
Naïve Function Casts
27
Casts in functional languages
<Int>n → n <Int>v → error: “failed cast” (if v∉Int) <σ→τ>λx:?.e → …
28
Casts in functional languages
<Int>n → n <Int>v → error: “failed cast” (if v∉Int) <σ→τ>λx:?.e → λz:σ.<τ>((λx:?.e) z) Very useful, very popular… unsafe for space. fresh, typed proxy cast result
29
More space leaks fun evenk(n : Int, k : ? → ?) = if (n = 0)
then k(true) else oddk(n – 1, k) fun oddk(n : Int, k : Bool → Bool) = then k(false) else evenk(n – 1, k)
30
More space leaks fun evenk(n : Int, k : ? → ?) = if (n = 0)
then k(true) else oddk(n – 1, <Bool→Bool>k) fun oddk(n : Int, k : Bool → Bool) = then k(false) else evenk(n – 1, <?→?>k)
31
x More space leaks (…without even using k0!) evenk(n, k0)
→* oddk(n - 1, <Bool→Bool>k0) →* oddk(n - 1, λz:Bool.<Bool>k0(z)) →* evenk(n - 2, <?→?>λz:Bool.<Bool>k0(z)) →* evenk(n - 2, λy:?.(λz:Bool.<Bool>k0(z))(y)) →* oddk(n - 3, <Bool→Bool>λy:?.(λz:Bool.<Bool>k0(z))(y)) →* oddk(n – 3, λx:Bool.(λy:?.(λz:Bool.<Bool>k0(z))(y))(x)) →* evenk(n - 4, <?→?>λx:Bool.(λy:?.(λz:Bool.<Bool>k0(z))(y))(x)) →* evenk(n - 4, λw:?.(λx:Bool.(λy:?.(λz:Bool.<Bool>k0(z))(y))(x))(w)) →* oddk(n - 5, <Bool→Bool>λw:?.(λx:Bool.(λy:?.(λz:Bool.<Bool>k0(z))(y))(x))(w)) →* oddk(n - 5, λv:Bool.<Bool>(λw:?.(λx:Bool.(λy:?.(λz:Bool.<Bool>k0(z))(y))(x))(w))(v)) →* … (…without even using k0!) x
32
Space-Efficient Gradual Typing
33
Intuition Casts are like function restrictions (Findler and Blume, 2006) Can their representation exploit the properties of restrictions?
34
Exploiting algebraic properties
Closure under composition: <Bool>(<Bool> v) = (<Bool>◦<Bool>) v
35
Exploiting algebraic properties
Idempotence: <Bool>(<Bool> v) = (<Bool>◦<Bool>) v = <Bool> v
36
Exploiting algebraic properties
Distributivity: (<?→?>◦<Bool→Bool>) v = <(Bool◦?)→(?◦Bool)> v
37
Space-efficient gradual typing
Generalize casts to coercions (Henglein, 1994) Change representation of casts from <τ> to <c> Merge casts at runtime: This coercion can be simplified! <c>(<d> e) → <c◦d>e merged before evaluating e
38
Space-efficient gradual typing
Generalize casts to coercions (Henglein, 1994) Change representation of casts from <τ> to <c> Merge casts at runtime: <c>(<d> e) → <c◦d>e <c′>e
39
ü Tail recursion even(n) →* odd(n - 1) →* <Bool>even(n - 2)
→* <Bool>odd(n - 3) →* <Bool><Bool>even(n - 4) →* <Bool>even(n - 4) →* <Bool>odd(n - 5) →* <Bool><Bool>even(n - 6) →* <Bool>even(n - 6) →* … ü
40
ü Bounded proxies evenk(n, k0) →* oddk(n - 1, <Bool→Bool>k0)
→* evenk(n - 2, <?→?><Bool→Bool>k0) →* evenk(n - 2, <Bool→Bool>k0) →* oddk(n - 3, <Bool→Bool>k0) →* evenk(n - 4, <?→?><Bool→Bool>k0) →* evenk(n - 4, <Bool→Bool>k0) →* oddk(n - 5, <Bool→Bool>k0) →* … ü
41
Guaranteed. Theorem: any program state S during evaluation of a program P is bounded by kP · sizeOR(S) sizeOR(S) = size of S without any casts
42
Related work Gradual typing Function proxies Coercions
Siek and Taha (2006, 2007) Function proxies Findler and Felleisen (1998, 2006): Software contracts Gronski, Knowles, Tomb, Freund, Flanagan (2006): Hybrid typing, Sage Tobin-Hochstadt and Felleisen (2006): Interlanguage migration Coercions Henglein (1994): Dynamic typing Space efficiency Clinger (1998): Proper tail recursion
43
Contributions Space-safe representation and semantics of casts for functional languages Supports function casts and tail recursion Three implementation strategies (coercion-passing style, trampoline, continuation marks) Earlier error detection (see paper) Proof of space efficiency
44
The point, again Naïve type conversions in functional programming languages are not safe for space. But they can and should be. Thank you.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.