Download presentation
Presentation is loading. Please wait.
1
8.2 Using the Rule of Inference
Predicate Logic 8.2 Using the Rule of Inference
2
Using Rules of Inference
(x)(Ax → Bx) (x)(Bx → Cx) / (x)(Ax → Cx) Ax → Bx , UI Bx → Cx , UI Ax → Cx ,3, HS (x)(Ax → Cx) , UG
3
Using Rules of Inference
(x)(Bx → Cx) (Ex)(Ax ● Bx) / (Ex)(Ax ● Cx) Am ● Bm , EI Bm → Cm , UI Am , Simp Bm ● Am , Com Bm , Simp Cm ,7, MP Am ● Cm ,8, Conj (x)(Ax ● Cx) , UG
4
Using Rules of Inference
(x)(Ax → Bx) ~Bm / (Ex)~Ax Am → Bm , UI ~Am ,3, MT (Ex)~Ax , EG
5
Using Rules of Inference
(x)[Ax → (Bx v Cx)] Ag ● ~Bg / Cg Ag → (Bg v Cg) , UI Ag , Simp Bg v Cg ,4, MP ~Bg ● Ag , Com ~Bg , Simp Cg ,7, DS
6
Using Rules of Inference
(x)[Jx → (Kx ● Lx)] (Ey)~Ky / (Ez)~Jz ~Km , EI Jm → (Km ● Lm) , UI ~Km v ~Lm , Add ~(Km ● Lm) , DM ~Jm ,6, MT (Ez)~Jz , EG
7
Using Rules of Inference
(x)[Ax → (Bx v Cx) (Ex)(Ax ● ~Cx) / (Ex)Bx Am ● ~Cm , EI Am → (Bm v Cm) , UI Am , Simp Bm v Cm ,5, MP Cm v Bm , Com ~Cm ● Am , Com ~Cm , Simp Bm ,9, DS (Ex)Bx , EG
8
Using Rules of Inference
(x)(Ax → Bx) Am ● An / Bm ● Bn Am → Bm , UI Am , Simp Bm ,4, MP (Ex)Bx , EG Bn , EI Bm ● Bn ,7, Conj
9
Using Rules of Inference
(x)(Ax → Bx) Am v An / Bm v Bn Am → Bm , UI An → Bn , UI (Am → Bm) ● (An → Bn) 2,3, Conj Bm v Bn ,5, CD
10
Using Rules of Inference
(x)(Bx v Ax) (x)(Bx → Ax) / (x)Ax Bx v Ax , UI Bx → Ax , UI Ax v Bx , Com ~~Ax v Bx , DN ~Ax → Bx , DM ~Ax → Ax ,7, HS ~~Ax v Ax , DM Ax v Ax , DN Ax , Taut (x)Ax , UG
11
Using Rules of Inference
(x)[(Ax ● Bx) → Cx] (Ex)(Bx ● ~Cx) / (Ex)~Ax Bm ● ~Cm , EI (Am ● Bm) → Cm , UI ~Cm ● Bm , Com ~Cm , Simp ~(Am ● Bm) ,6, MT Bm , Simp ~Am v ~Bm , DM ~~Bm , DN ~Bm v ~Am , Com ~Am ,11, DS (Ex)~Ax , EG
12
Using Rules of Inference
(Ex)Ax → (x)(Bx → Cx) Am ● Bm / Cm Am , Simp (Ex)Ax , EG (x)(Bx → Cx) ,4, MP Bm → Cm , UI Bm ● Am , Com Bm , Simp Cm ,8, MP
13
Using Rules of Inference
(Ex)Ax → (x)Bx (Ex)Cx → (Ex)Dx An ● Cn / (Ex)(Bx ● Dx) An , Simp (Ex)Ax , EG (x)Bx ,5, MP Cn ● An , Com Cn , Simp (Ex)Cx , EG (Ex)Dx ,9, MP Dm , EI (Choosing m because n is taken, and don’t know that D can be n) Bm , UI (B can be n or m, as both appear above it, but m is convenient to get the conclusion) Bm ● Dm ,12, Conj (Ex)(Bx ● Dx) , EG
14
Using Rules of Inference
(Ex)Ax → (x)(Cx → Bx) (Ex)(Ax v Bx) (x)(Bx → Ax) / (x)(Cx → Ax) Am v Bm , EI Bm → Am , UI ~Am → Bm , DM ~Am → Am ,6, HS Am v Am , DM Am , Taut (Ex)Ax , EG (x)(Cx → Bx) ,10, MP Cm → Bm , UI (B taking m is okay, but is C?) Cm → Am ,12, HS (x)(Cx → Ax) , UG
15
Using Rules of Inference
(Ex)Ax → (x)(Bx → Cx) (Ex)Dx → (Ex)~Cx (Ex)(Ax ● Dx) / (Ex)~Bx Am ● Dm , EI Dm ● Am , Com Dm , Simp (Ex)Dx , EG (Ex)~Cx ,7, MP Am , Simp (Ex)Ax , EG (x)(Bx → Cx) ,10, MP Bm → Cm , UI (Again, ,,, ~Cm , EI ~Bm ,13, MT (Ex)~Bx , EG
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.