Presentation is loading. Please wait.

Presentation is loading. Please wait.

FP2 Chapter 1 - Inequalities

Similar presentations


Presentation on theme: "FP2 Chapter 1 - Inequalities"β€” Presentation transcript:

1 FP2 Chapter 1 - Inequalities
Dr J Frost Last modified: 3rd August 2015

2 RECAP ? ? Solve 2 π‘₯ 2 <π‘₯+3 π‘₯<2 β†’ 3π‘₯<6 ?
Solving Quadratic Inequalities (C1) Permitted operations in inequalities? Solve 2 π‘₯ 2 <π‘₯+3 2 π‘₯ 2 βˆ’π‘₯βˆ’3<0 2π‘₯βˆ’3 π‘₯+1 <0 π‘₯<2 β†’ 3π‘₯< ? 6π‘₯<12 β†’ π‘₯< ? βˆ’6π‘₯<12 β†’ π‘₯<βˆ’2 ? 1 π‘₯ > β†’ 1>π‘₯ ? ? 𝑦 ? If we divide by a negative number the inequality should β€˜flip’. Because in the last example we don’t know whether π‘₯ is positive or negative, we don’t know whether the inequality will flip. In general, never multiply be an expression involving a variable in an inequality unless you know it’s positive. π‘₯ βˆ’1 3 2 βˆ’1<π‘₯< 3 2

3 Getting around this problem
Solve π‘₯ 2 π‘₯βˆ’2 <π‘₯+1, π‘₯β‰ 2 We can’t multiply by π‘₯βˆ’2, but what could we multiply by? π’™βˆ’πŸ 𝟐 , which is always positive! Then: π‘₯ 2 π‘₯βˆ’2 < π‘₯+1 π‘₯βˆ’ π‘₯ 2 π‘₯βˆ’2 βˆ’ π‘₯+1 π‘₯βˆ’2 2 <0 π‘₯βˆ’2 π‘₯ 2 βˆ’(π‘₯+1)(π‘₯βˆ’2) <0 π‘₯βˆ’2 π‘₯+2 <0 ? Bro Tip: Remember in FP1 with summation proofs, we tried to avoid expanding things where we could factorise first? ? ? ? ? 𝑦 π‘₯ βˆ’2 2 βˆ’2<π‘₯<2

4 Another Example Solve π‘₯ π‘₯+1 ≀ 2 π‘₯+3 , π‘₯β‰ βˆ’1, π‘₯β‰ βˆ’3 ? Factorise ? Sketch?
Multiply both sides by: π‘₯ π‘₯+3 2 π‘₯ π‘₯+1 π‘₯+3 2 ≀2 π‘₯ π‘₯+3 π‘₯ π‘₯+1 π‘₯+3 2 βˆ’2 π‘₯ π‘₯+3 ≀0 (π‘₯+1)(π‘₯+3)(π‘₯ π‘₯+3 βˆ’2 π‘₯+1 ≀0 π‘₯+1 π‘₯+3 π‘₯ 2 βˆ’π‘₯βˆ’2 ≀0 π‘₯+1 π‘₯+3 π‘₯+2 π‘₯βˆ’1 ≀0 Bro Note: While cubics have two β€˜zig zags’ (not necessarily turning points!), quartics have three. If the π‘₯ 4 term is positive the quartic starts from the top. Factorise ? Sketch? 𝑦 Solution ? βˆ’3≀π‘₯β‰€βˆ’2 or βˆ’1≀π‘₯≀1 π‘₯ βˆ’3 βˆ’2 βˆ’1 1

5 Test Your Understanding
FP1 June 2007 Q1 (Yes, it’s moved module!) Find the set of values of π‘₯ for which π‘₯+1 2π‘₯βˆ’3 < 1 π‘₯βˆ’3 (7) ? P4 Jan 2006 Q2 (We’re going back to the good ole’ days now of P!) Find the set of values of π‘₯ for which π‘₯ 2 π‘₯βˆ’2 >2π‘₯ (6) ?

6 Exercise 1A Solve the following inequalities. 3 π‘₯ 2 +5 π‘₯+5 > βˆ’πŸ“<𝒙<𝟎 𝒐𝒓 𝒙> 𝟏 πŸ‘ 3π‘₯ π‘₯βˆ’2 >π‘₯ 𝒙<𝟎 𝒐𝒓 𝟐<𝒙<πŸ“ 1+π‘₯ 1βˆ’π‘₯ > 2βˆ’π‘₯ 2+π‘₯ 𝒙<βˆ’πŸ 𝒐𝒓 𝟎<𝒙<𝟏 π‘₯ 2 +7π‘₯+10 π‘₯+1 >2π‘₯+7 𝒙<βˆ’πŸ‘ 𝒐𝒓 βˆ’πŸ<𝒙<𝟏 π‘₯+1 π‘₯ 2 > βˆ’ 𝟏 πŸ‘ <𝒙< 𝟏 𝟐 𝒃𝒖𝒕 π’™β‰ πŸŽ π‘₯ 2 π‘₯+1 > βˆ’πŸ<𝒙<βˆ’ 𝟏 πŸ‘ 𝒐𝒓 𝒙> 𝟏 𝟐 ? ? 11 π‘₯ 2 <5π‘₯ βˆ’πŸ<𝒙<πŸ” π‘₯ π‘₯+1 β‰₯ 𝒙β‰₯𝟐 𝒐𝒓 π’™β‰€βˆ’πŸ‘ 2 π‘₯ 2 +1 > βˆ’πŸ<𝒙<𝟏 2 π‘₯ 2 βˆ’1 > βˆ’ πŸ‘ <𝒙<βˆ’πŸ 𝒐𝒓 𝟏<𝒙< πŸ‘ π‘₯ π‘₯βˆ’1 ≀2π‘₯ 𝒙> πŸ‘ 𝟐 𝒐𝒓 𝟎<𝒙<𝟏 3 π‘₯+1 < 2 π‘₯ 𝒙<βˆ’πŸ 𝒐𝒓 𝟎<𝒙<𝟐 3 π‘₯+1 π‘₯βˆ’1 < 𝒙<βˆ’πŸ 𝒐𝒓 βˆ’πŸ<𝒙<𝟏 𝒐𝒓 𝒙>𝟐 2 π‘₯ 2 β‰₯ 3 π‘₯+1 π‘₯βˆ’2 βˆ’πŸ<𝒙<𝟐 π’™β‰ πŸŽ 𝒐𝒓 βˆ’πŸ<𝒙<𝟎 𝒐𝒓 𝟎<𝒙<𝟐 2 π‘₯βˆ’4 < 𝒙<πŸ’ 𝒐𝒓 𝒙> πŸπŸ’ πŸ‘ 3 π‘₯+2 > 1 π‘₯βˆ’5 βˆ’πŸ<𝒙<πŸ“ 𝒐𝒓 𝒙>πŸ–.πŸ“ 1 2 ? ? 12 ? 3 ? 13 ? 4 14 ? 5 ? ? ? 6 15a ? 15b 7 ? 8 ? ? 9 ? 10

7 Solving by Sketching ? Hence solution: 𝟎<𝒙<𝟏 A simple example:
By using appropriate sketches, solve 1 π‘₯ >1 𝑦 Click to Brosketch 𝑦= 1 π‘₯ 1 π’š=𝟏 π’š= 𝟏 𝒙 Click to Brosketch 𝑦=1 π‘₯ 1 The π‘₯ values where the lines intersect (which we call the β€˜critical values’) is important. Hence solution: 𝟎<𝒙<𝟏 ?

8 More Examples On the same axes sketch the graphs of the curves with equations 𝑦= 7π‘₯ 3π‘₯+1 and 𝑦=4βˆ’π‘₯. Find their points of intersection. Hence solve 7π‘₯ 3π‘₯+1 <4βˆ’π‘₯ 𝑦 As π‘₯β†’βˆž, the +1 becomes inconsequential, thus we get 7π‘₯ 3π‘₯ = 7 3 Click to Brosketch 𝑦= 7π‘₯ 3π‘₯+1 π’š= πŸ• πŸ‘ Click to Brosketch 𝑦=4βˆ’π‘₯ π‘₯ βˆ’ 2 3 2 Points of intersection (by solving as an equation): 𝒙=βˆ’ 𝟐 πŸ‘ 𝒐𝒓 𝟐 When π‘₯=0, 𝑦=0 𝒙=βˆ’ 𝟏 πŸ‘ ? Hence solution to inequality: 𝒙<βˆ’ 𝟐 πŸ‘ 𝒐𝒓 βˆ’ 𝟏 πŸ‘ <𝒙<𝟐 Not defined when π‘₯=βˆ’ 1 3 ?

9 Modulus-ey ones ? ? ? ? Solve π‘₯ 2 βˆ’4π‘₯ <3 Solve 3π‘₯ +π‘₯≀2 𝑦
First isolate modulus to make sketching easier: 3π‘₯ ≀2βˆ’π‘₯ (Noting that π‘₯ 2 βˆ’4π‘₯ =π‘₯ π‘₯βˆ’4 ) π’š= 𝒙 𝟐 βˆ’πŸ’π’™ 𝑦 π’š=πŸ‘ 2 π‘₯ 2βˆ’ 7 1 3 2+ 7 1 2 π‘₯ βˆ’1 2 Brosketch 𝑦=| π‘₯ 2 βˆ’4π‘₯| Brosketch 𝑦=3 Brosketch 𝑦=|3π‘₯| Brosketch 𝑦=2βˆ’π‘₯ Find critical values: π‘₯ 2 βˆ’4π‘₯= β†’ π‘₯=2Β± 7 βˆ’ π‘₯ 2 βˆ’4π‘₯ =3 β†’ π‘₯=1 π‘œπ‘Ÿ 3 Find critical values: 3π‘₯=2βˆ’π‘₯ β†’ π‘₯= 1 2 βˆ’3π‘₯=2βˆ’π‘₯ β†’ π‘₯=βˆ’1 ? ? Hence solutions: 2βˆ’ 7 <π‘₯<1 π‘œπ‘Ÿ 3<π‘₯<2+ 7 Find critical values: βˆ’1≀π‘₯≀ 1 2 ? ?

10 Modulus-ey ones ? ? Solve π‘₯ 2 βˆ’19 ≀5 π‘₯βˆ’1 𝑦
Solving π‘₯ 2 βˆ’19=5 π‘₯βˆ’1 gives π‘₯=βˆ’2 or π‘₯=7 Solving βˆ’ π‘₯ 2 βˆ’19 =5 π‘₯βˆ’1 gives π‘₯=βˆ’8 or 3. Which critical values do we actually want? (hint: look at graph) From the positive 𝒙 𝟐 βˆ’πŸπŸ— graph we want the latter point (𝒙=πŸ•) For the negative 𝒙 𝟐 βˆ’πŸπŸ— graph we again want the latter point 𝒙=πŸ‘ Therefore solutions: πŸ‘β‰€π’™β‰€πŸ• ? π‘₯ 3 7 ?

11 Test Your Understanding
FP1 June 2006 Q7 (a) Use algebra to find the exact solutions of the equation: Β  2 π‘₯ 2 +π‘₯βˆ’6 =6βˆ’3π‘₯ (6) (b) On the same diagram, sketch the curve with equation y = ο‚½2x2 + x – 6ο‚½ and the line with equation y = 6 – 3x (3) (c) Find the set of values of x for which 2 π‘₯ 2 +π‘₯βˆ’6 >6βˆ’3π‘₯Β  (3) (a) ? (c) ? (b) ?

12 Exercise 1B ? ? ? ? ? ? ? ? ? ? Solve the following inequalities: 9
On the same axes sketch the graphs of 𝑦= 1 π‘₯ and 𝑦= π‘₯ π‘₯+2 Hence solve 1 π‘₯ > π‘₯ π‘₯+2 βˆ’πŸ<𝒙<βˆ’πŸ 𝒐𝒓 𝟎<𝒙<𝟐 On the same axes sketch the graphs of 𝑦= 1 π‘₯βˆ’π‘Ž and 𝑦=4|π‘₯βˆ’π‘Ž| Solve 1 π‘₯βˆ’π‘Ž <4 π‘₯βˆ’π‘Ž 𝒙<𝒂 𝒐𝒓 𝒙>𝒂+ 𝟏 𝟐 π‘₯βˆ’6 >6π‘₯ 𝒙< πŸ” πŸ• π‘‘βˆ’3 > 𝑑 βˆ’πŸβˆ’ πŸπŸ‘ 𝟐 <𝒕< βˆ’πŸ+ πŸπŸ‘ 𝟐 π‘₯βˆ’2 π‘₯+6 < βˆ’πŸ•<𝒙<βˆ’πŸβˆ’ πŸ• or βˆ’πŸ+ πŸ• <𝒙<πŸ‘ 2π‘₯+1 β‰₯ π’™β‰€βˆ’πŸ 𝒐𝒓 𝒙β‰₯𝟏 2π‘₯ +π‘₯> 𝒙<βˆ’πŸ‘ 𝒐𝒓 𝒙>𝟏 π‘₯+3 π‘₯ +1 < 𝒙<βˆ’ 𝟏 πŸ‘ 𝒐𝒓 𝒙>𝟏 3βˆ’π‘₯ π‘₯ +1 > βˆ’πŸ<𝒙< 𝟏 πŸ‘ π‘₯ π‘₯+2 <1βˆ’π‘₯ 𝒙<βˆ’πŸβˆ’ πŸ‘ 𝒐𝒓 βˆ’ 𝟐 <𝒙<βˆ’πŸ+ πŸ‘ ? 1 ? 2 ? 10 3 ? 4 ? 5 ? ? ? 6 ? 7 8 ?


Download ppt "FP2 Chapter 1 - Inequalities"

Similar presentations


Ads by Google