Download presentation
Presentation is loading. Please wait.
Published byFarida Muljana Modified over 6 years ago
1
A Tight Lower Bound for Counting Hamiltonian Cycles via Matrix Rank
Presented at SODA 2018 Radu Curticapean Hungarian Academy of Sciences Nathan Lindzey University of Waterloo Jesper Nederlof Technische Universiteit Eindhoven Slides mostly by Radu
2
Hamiltonicity
3
Hamiltonicity under treewidth
treewidth ๐๐ ๐ฎ =๐: hierarchy of ๐-sized separators enables dynamic programming tree 1 ๐ฒ ๐ ๐โ1 SPG 2 planar ~ ๐ deg-๐ ~๐/6
4
Hamiltonicity under treewidth
The complexity of NP-hard problems on small-treewidth instances often depends on the rank of problem-related matrices. Refined DP standard ๐ โ ๐ก๐ค! refined DP ๐ โ ( ๐ ๐ก๐ค ) decision ๐=2+ 2 optimal under SETH! counting ๐=6 (assuming ๐=2) this paper: optimal under SETH!
5
Refined DP: Matchings Connectivity Matrix
1 matchings connectivity matrix ๐ด ๐ over all perfect matchings on ๐ ,, ๐ด ๐ ๐, ๐ โฒ =1 iff ๐โช๐ โฒ is cycle CKN[STOC13, JACM18]: ๐ ๐ ๐ฝ 2 ๐ ๐ = 2 ๐/2โ1 , and ๐ ๐ contains equally large permutation submatrix, decide the existence and count HCโs mod 2 in ๐ โ ๐๐ค time, use permutation submatrix to show ๐ โ โ๐ ๐๐ค time violates SETH.
6
1+2 1 2 Our main contributions
Determine rk โ ( ๐ด ๐ ) using representation theory of the symmetric group 1 2 New reduction idea turns any rank lower bound into SETH lower bound BCKN[Inf. Comptโ15], W[IPEC16] Counting HCs rk โ ๐ ๐ โ 4 ๐ ๐ โ ( 6 ๐ก๐ค ) time optimal base under SETH
7
Thank you!! ? Decide/count HCs mod 2 Counting HCs mod pโ 2 Counting HCs
rk โค 2 ๐ ๐ = 2 ๐/2โ1 ๐ โ ( 3.41 ๐ก๐ค ) time optimal base under SETH CKN[STOC13, JACM18] r ๐ โค ๐ ๐ ๐ โฅ 1.97 ๐ Counting HCs mod pโ 2 ? ฮฉ โ ( 3.97 ๐ก๐ค ) time under SETH [this paper] [this paper] BCKN[Inf. Comptโ15], W[IPEC16] Counting HCs ๐ โ ( 6 ๐ก๐ค ) time rk โ ๐ ๐ โ 4 ๐ optimal base under SETH Thank you!!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.