Presentation is loading. Please wait.

Presentation is loading. Please wait.

A Tight Lower Bound for Counting Hamiltonian Cycles via Matrix Rank

Similar presentations


Presentation on theme: "A Tight Lower Bound for Counting Hamiltonian Cycles via Matrix Rank"โ€” Presentation transcript:

1 A Tight Lower Bound for Counting Hamiltonian Cycles via Matrix Rank
Presented at SODA 2018 Radu Curticapean Hungarian Academy of Sciences Nathan Lindzey University of Waterloo Jesper Nederlof Technische Universiteit Eindhoven Slides mostly by Radu

2 Hamiltonicity

3 Hamiltonicity under treewidth
treewidth ๐’•๐’˜ ๐‘ฎ =๐’Œ: hierarchy of ๐‘˜-sized separators enables dynamic programming tree 1 ๐‘ฒ ๐’ ๐‘›โˆ’1 SPG 2 planar ~ ๐‘› deg-๐Ÿ‘ ~๐‘›/6

4 Hamiltonicity under treewidth
The complexity of NP-hard problems on small-treewidth instances often depends on the rank of problem-related matrices. Refined DP standard ๐‘‚ โˆ— ๐‘ก๐‘ค! refined DP ๐‘‚ โˆ— ( ๐‘ ๐‘ก๐‘ค ) decision ๐‘=2+ 2 optimal under SETH! counting ๐‘=6 (assuming ๐œ”=2) this paper: optimal under SETH!

5 Refined DP: Matchings Connectivity Matrix
1 matchings connectivity matrix ๐‘ด ๐’ƒ over all perfect matchings on ๐‘ ,, ๐‘ด ๐’ƒ ๐‘, ๐‘ โ€ฒ =1 iff ๐‘โˆช๐‘ โ€ฒ is cycle CKN[STOC13, JACM18]: ๐‘Ÿ ๐‘˜ ๐”ฝ 2 ๐‘€ ๐‘ = 2 ๐‘/2โˆ’1 , and ๐‘€ ๐‘ contains equally large permutation submatrix, decide the existence and count HCโ€˜s mod 2 in ๐‘‚ โˆ— ๐‘๐‘ค time, use permutation submatrix to show ๐‘‚ โˆ— โˆ’๐œ€ ๐‘๐‘ค time violates SETH.

6 1+2 1 2 Our main contributions
Determine rk โ„ ( ๐‘ด ๐’ƒ ) using representation theory of the symmetric group 1 2 New reduction idea turns any rank lower bound into SETH lower bound BCKN[Inf. Comptโ€˜15], W[IPEC16] Counting HCs rk โ„ ๐‘€ ๐‘ โ‰ˆ 4 ๐‘ ๐‘‚ โˆ— ( 6 ๐‘ก๐‘ค ) time optimal base under SETH

7 Thank you!! ? Decide/count HCs mod 2 Counting HCs mod pโ‰ 2 Counting HCs
rk โ„ค 2 ๐‘€ ๐‘ = 2 ๐‘/2โˆ’1 ๐‘‚ โˆ— ( 3.41 ๐‘ก๐‘ค ) time optimal base under SETH CKN[STOC13, JACM18] r ๐‘˜ โ„ค ๐‘ ๐‘€ ๐‘ โ‰ฅ 1.97 ๐‘ Counting HCs mod pโ‰ 2 ? ฮฉ โˆ— ( 3.97 ๐‘ก๐‘ค ) time under SETH [this paper] [this paper] BCKN[Inf. Comptโ€˜15], W[IPEC16] Counting HCs ๐‘‚ โˆ— ( 6 ๐‘ก๐‘ค ) time rk โ„ ๐‘€ ๐‘ โ‰ˆ 4 ๐‘ optimal base under SETH Thank you!!


Download ppt "A Tight Lower Bound for Counting Hamiltonian Cycles via Matrix Rank"

Similar presentations


Ads by Google