Download presentation
Presentation is loading. Please wait.
1
Collider Ring Optics & Related Issues
Vasiliy Morozov for the JLab EIC Study Group
2
MEIC Layout Prebooster 0.2GeV/c 3-5 GeV/c protons Big booster
3-5GeV/c up to 20 GeV/c protons 3 Figure-8 rings stacked vertically
3
Big Booster Acceleration of protons from 3-5 GeV/c to up to 20 GeV/c for injection into ion collider ring Big booster implementation options Separate warm ring in collider rings’ tunnel (current baseline) Using the electron ring Separate cold ring in the prebooster’s tunnel Big booster design considerations Avoid transition energy crossing Space charge higher injection energy for larger ring Matching RF systems debunch low-frequency beam and then rebunch it at higher frequency?
4
Ion Collider Ring Layout
Geometrical matching of electron and ion rings Spin rotators in the electron ring Siberian snakes in the proton ring arcs Siberian snake Ion Ring Electron Ring Spin rotators
5
Modular Design Concept
Design separately and incorporate/match into the ring Vertical chicanes for stacking the ion ring arcs on top of the electron ring Injection section Electron cooling section Siberian snakes Interaction region with horizontal crossing Section for local chromaticity compensation
6
Adjusting quad strengths
Basic Ring Parameters Proton beam momentum GeV/c 60 Circumference m Arc’s net bend deg 240 Straights’ crossing angle Arc length 300.5 Arc average radius 71.74 Straight section length 220.06 Lattice basic cell FODO Arc / straight FODO cell length 9 / 6.16 Nominal phase advance per cell x / y 90 / 90 Number of arc / straight FODO cells 54 / 68 Dispersion suppression Adjusting quad strengths
7
Magnet Parameters Proton beam momentum GeV/c 60 Number of dipoles 108
Dipole length m 3 Bending radius 38.7 Bending angle deg 4.4 Bending field T 5.2 Number of quads 288 Quad length 0.5 Quad strength in arc / straight FODO cells T/m 130 / 195
8
Arc FODO Cell /2 betatron phase advance in both planes
Magnet parameters for 60 GeV/c protons: Dipoles: length = 3 m bending radius = 38.7 m bending angle = 4.4 bending field = 5.2 T Quads: length = 0.5 m strength = 130 T/m
9
Dispersion Suppressor
Quads in 3 FODO cells varied to suppress dispersion while keeping -functions from growing Maximum quad strength at 60 GeV/c = 148 T/m
10
Short Straight for Siberian Snake
Symmetric quad arrangement Initial values from the dispersion suppressor Quads varied to obtain x,y = 0 in the middle at limited max Maximum quad strength at 60 GeV/c = 130 T/m
11
Arc End with Dispersion Suppression
Indicated quads varied to suppress dispersion with limitations on max and Dmax Maximum quad strength at 60 GeV/c = 212 T/m Varied quads Regular FODO To straight section
12
Complete Arc Length = m, net bend = 240, average radius = 72 m
13
Straight FODO Cell /2 betatron phase advance in both planes
Drift length chosen to close the ring’s geometry Quad strength at 60 GeV/c = 195 T/m
14
Arc to Straight Matching Section
Four quads in two FODO cells adjusted to match ’s and ’s from arcs to straight’s standard FODO cell Maximum quad strength at 60 GeV/c = 222 T/m
15
Complete Figure-8 Ring Total length = 1041 m
16
Figure-8 Ring Layout 100 m
17
Summary of Optics Parameters
Proton beam momentum GeV/c 60 Circumference m Arc’s net bend deg 240 Straights’ crossing angle Arc length 300.5 Straight section length 220.06 Maximum horizontal / vertical functions 20.8 / 20.8 Maximum horizontal dispersion Dx 2.01 Horizontal / vertical betatron tunes x,y 33.(03) / 33. (16) Horizontal / vertical chromaticitiesx,y / Momentum compaction factor 4.7 10-3 Transition energy tr 14.58 Horizontal / vertical normalized emittance x,y µm rad 0.35 / 0.07 At 20 GeV/c injection: Maximum horizontal / vertical rms beam size x,y 15* horizontal / vertical beam stay clear mm 4 / 4 2 / 2 30 / 30
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.