Presentation is loading. Please wait.

Presentation is loading. Please wait.

Unit 5. Day 15..

Similar presentations


Presentation on theme: "Unit 5. Day 15.."β€” Presentation transcript:

1 Unit 5. Day 15.

2 Modeling Proportional Relationships
Traditional Alternate

3 Official Math Standard 7.RP.2.c
Represent proportional relationships by equations.Β For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as t = pn. $ π‘Žπ‘π‘π‘™π‘’ $ π‘Žπ‘π‘π‘™π‘’ 0.30 1.20 Γ·4 Three apples cost $1.20 4 Γ·4 𝑐 𝑑 = 0.3 𝑛 βˆ™ π‘Ž π‘₯:π‘Žπ‘π‘π‘™π‘’ 𝑦:π‘π‘œπ‘ π‘‘ 𝑦 =0.3π‘₯

4 Official Math Standard 7.RP.2.c
Represent proportional relationships by equations.Β For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as t = pn. 4 shirts cost $50. 25 2 50 4 $ π‘ β„Žπ‘–π‘Ÿπ‘‘ 50 $ π‘ β„Žπ‘–π‘Ÿπ‘‘ $ π‘ β„Žπ‘–π‘Ÿπ‘‘ 50 $ π‘ β„Žπ‘–π‘Ÿπ‘‘ 12.50 Γ·4 Γ·4 4 4 Γ·4 Γ·4 π‘₯:π‘ β„Žπ‘–π‘Ÿπ‘‘π‘  𝑦:π‘π‘œπ‘ π‘‘ 25 2 𝑑 𝑐 𝑦 = π‘₯ 𝑛 βˆ™ 𝑠 𝑐 𝑑 𝑦 = 12.5 βˆ™ π‘₯ 𝑛 𝑠

5 Official Math Standard 7.RP.2.c
Represent proportional relationships by equations.Β For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as t = pn. 20 kilometers in 6 hours 20 6 10 3 20 π‘šπ‘– 1 β„Žπ‘Ÿ 3. 3 π‘˜π‘š β„Žπ‘Ÿ π‘˜π‘š β„Žπ‘Ÿ 20 Γ·6 π‘˜π‘š 1 β„Žπ‘Ÿ Γ·6 6 6 Γ·6 Γ·6 π‘₯:π‘‘π‘–π‘šπ‘’ (β„Žπ‘Ÿπ‘ ) 𝑦:π‘šπ‘–π‘™π‘’π‘  10 3 𝑦 𝑑 = βˆ™ π‘₯ 𝑑 𝑑 𝑦 = 3. 3 βˆ™ π‘₯ 𝑑

6 Official Math Standard 7.RP.2.c
Represent proportional relationships by equations.Β For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as t = pn. 4 pizzas were ordered to feed 10 teens 4 10 2 5 π‘π‘–π‘§π‘§π‘Ž 𝑑𝑒𝑒𝑛 4 π‘π‘–π‘§π‘§π‘Ž 1 𝑑𝑒𝑒𝑛 π‘π‘–π‘§π‘§π‘Ž 𝑑𝑒𝑒𝑛 4 0.4 π‘π‘–π‘§π‘§π‘Ž 1 𝑑𝑒𝑒𝑛 Γ·10 Γ·10 10 10 Γ·10 Γ·10 π‘₯:𝑑𝑒𝑒𝑛𝑠 𝑦:π‘π‘–π‘§π‘§π‘Ž 2 5 𝑝 = βˆ™ 𝑑 𝑝 𝑦 = 0.4 βˆ™ 𝑦 π‘₯ π‘₯ 𝑑

7 Modeling Proportional Relationships
Traditional Alternate

8 If we have a proportional relationship
And we want to represent it with an equation (model) We have two options to create our equation. Find Unit Rate Cross Multiply

9 𝑦= π‘₯ π‘Ÿ Three apples cost $1.20 1.2 3 = 𝑦 π‘₯ π‘₯:π‘Žπ‘π‘π‘™π‘’π‘  𝑦:π‘π‘œπ‘ π‘‘ 𝑐=0.4π‘Ž 1.20
Example A: Three apples cost $1.20 Find Unit Rate Cross Multiply $ π‘Žπ‘π‘π‘™π‘’ = $ π‘Žπ‘π‘π‘™π‘’ 1.20 𝑦 3 π‘₯ 1.20 0.40 $ π‘Žπ‘π‘π‘™π‘’ Γ·3 $ π‘Žπ‘π‘π‘™π‘’ = 𝑦 π‘₯ 3 Γ·3 3 𝑦 = 1.2 π‘₯ 𝑦= π‘₯ π‘Ÿ 0.4 3𝑦 = 1.2π‘₯ 3 3 π‘₯:π‘Žπ‘π‘π‘™π‘’π‘  𝑦:π‘π‘œπ‘ π‘‘ 𝑐=0.4π‘Ž 𝑦 = 0.4π‘₯

10 𝑦= π‘₯ π‘Ÿ We walked 10 miles in 4 hours. 10 4 = 𝑦 π‘₯ π‘₯:π‘‘π‘–π‘šπ‘’ 𝑑= 5 2 𝑑
Example B: We walked 10 miles in 4 hours. Find Unit Rate Cross Multiply π‘šπ‘– β„Žπ‘Ÿ = π‘šπ‘– β„Žπ‘Ÿ 10 𝑦 4 π‘₯ 10 4 5 2 10 π‘šπ‘– β„Žπ‘Ÿ Γ·4 π‘šπ‘– 1 β„Žπ‘Ÿ = 𝑦 π‘₯ 4 Γ·4 4 𝑦 = 10 π‘₯ 5 2 𝑦= π‘₯ π‘Ÿ 4𝑦 = 10π‘₯ 4 4 π‘₯:π‘‘π‘–π‘šπ‘’ 𝑦:π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ 𝑑= 5 2 𝑑 10 4 π‘₯ 5 2 π‘₯ 𝑦 =

11 Example C*: Mr. Jordan paid $6 for eight donuts.
Model each situation with an equation Example C*: Mr. Jordan paid $6 for eight donuts. Example D*: We rode a bike miles in hour. Example E*: A truck uses gallons to travel 45 miles.

12 𝑦= π‘₯ π‘Ÿ Mr. Jordan paid $6 for eight donuts. 6 8 = 𝑦 π‘₯ π‘₯:π‘‘π‘œπ‘›π‘’π‘‘ 𝑐= 3 4 𝑑
Example C*: Mr. Jordan paid $6 for eight donuts. Find Unit Rate Cross Multiply 6 π‘π‘œπ‘ π‘‘ π‘‘π‘œπ‘›π‘’π‘‘ = π‘π‘œπ‘ π‘‘ π‘‘π‘œπ‘›π‘’π‘‘ 𝑦 8 π‘₯ 6 8 3 4 6 $ π‘‘π‘œπ‘›π‘’π‘‘ Γ·8 $ π‘‘π‘œπ‘›π‘’π‘‘ 6 8 = 𝑦 π‘₯ 8 Γ·8 8 𝑦 = 6 π‘₯ 3 4 𝑦= π‘₯ π‘Ÿ 8𝑦 = 6π‘₯ 8 8 π‘₯:π‘‘π‘œπ‘›π‘’π‘‘ 𝑦:π‘π‘œπ‘ π‘‘ 𝑐= 3 4 𝑑 3 4 π‘₯ 6 8 π‘₯ 𝑦 =

13 𝑦= π‘₯ π‘Ÿ We rode a bike 3 1 4 miles in 1 2 hour. 𝑑= 13 2 𝑑 π‘₯:π‘‘π‘–π‘šπ‘’
Example D*: Find Unit Rate Cross Multiply 13 4 𝑦 π‘šπ‘– β„Žπ‘Ÿ = π‘šπ‘– β„Žπ‘Ÿ π‘₯ 1 2 3 1 4 13 4 Γ· 1 2 26 4 13 2 π‘šπ‘– β„Žπ‘Ÿ π‘šπ‘– 1 β„Žπ‘Ÿ = 𝑦 π‘₯ 1 2 Γ· 1 2 1 2 𝑦 π‘₯ = 1 2 𝑦 13 4 π‘₯ 13 2 𝑦= π‘₯ π‘Ÿ = 1 2 1 2 𝑑= 13 2 𝑑 π‘₯:π‘‘π‘–π‘šπ‘’ 𝑦:π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ (π‘šπ‘–) 13 2 π‘₯ 26 4 π‘₯ 𝑦 =

14 𝑦= π‘₯ π‘Ÿ A truck uses 2 1 4 gallons to travel 45 miles. 𝑑=20𝑔 π‘₯:π‘”π‘Žπ‘™π‘™π‘œπ‘›π‘ 
Example E*: Find Unit Rate Cross Multiply 45 π‘šπ‘– π‘”π‘Žπ‘™ = π‘šπ‘– π‘”π‘Žπ‘™ 𝑦 9 4 π‘₯ Γ· 9 4 180 9 20 45 π‘šπ‘– π‘”π‘Žπ‘™ π‘šπ‘– 1 π‘”π‘Žπ‘™ = 𝑦 π‘₯ 2 1 4 9 4 Γ· 9 4 9 4 𝑦 = 45 π‘₯ 9 4 𝑦 𝑦= π‘₯ π‘Ÿ = 45π‘₯ 20 9 4 9 4 𝑑=20𝑔 π‘₯:π‘”π‘Žπ‘™π‘™π‘œπ‘›π‘  𝑦:π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ (π‘šπ‘–) 180 9 π‘₯ 𝑦 = 20π‘₯


Download ppt "Unit 5. Day 15.."

Similar presentations


Ads by Google