Download presentation
Presentation is loading. Please wait.
Published byLudo de Valk Modified over 6 years ago
1
戸谷 友則 (京大理) CANGAROO 望遠鏡によるガンマ線天文学の新展開 京都大学、平成15年12月12日
銀河団からのガンマ線放射 戸谷 友則 (京大理) CANGAROO 望遠鏡によるガンマ線天文学の新展開 京都大学、平成15年12月12日
2
Plan of the talk 銀河団からのガンマ線: 理論レビュー
銀河団からのガンマ線: 理論レビュー EGRET での検出可能性 --- 未同定天体の中にガンマ線銀河団はあるか? TeV 観測の可能性
3
銀河団からのガンマ線 ショックと高エネルギー粒子生成 放射機構 銀河からの宇宙線の漏れ出し (<1043 erg/s)
AGN (~1044 erg/s) 銀河団形成、合体などの構造形成時のショック (~1044 erg/s) 放射機構 ハドロン起源 陽子衝突、π生成 π0 ガンマ、二次電子 e.g. Colafrancesco & Blasi 1998 (1次)電子起源 逆コンプトン e.g. Totani & Kitayama 2000
4
ハドロン v.s. 電子 銀河団ガスの典型的密度 ~10-3 cm-3 << ISM in MW
pp reaction time scale: (n σpp c)-1 ~ 3.3 x 1010 (n/10-3cm-3)-1 yr CMB photon density universal! IC energy loss time scale: tcool = 2×106 (εγ/GeV)-1/2 yr << cluster age Electron Lorentz factor IC(CMB), GeV: γe =1.1x106 (εγ/GeV)1/2 Synch: γe =1.9x104 (ν/GHz)1/2(B/μG)-1/2 同じエネルギーが注入されれば、 LIC >> Lpp Active time scale: IC << pp
5
Model prediction for pp-gamma
Typical EGRET limit Colafrancesco & Blasi 1998
6
Prediction for IC gamma-ray clusters
Standard ΛCDM universe Dark halo formation rate dn(M, z)/dt Time-differenciation of the Press Schechter, Sasaki ’94, Kitayama & Suto ’96 5% injection of the total gravitational energy of bayron gas into electrons Electron energy spectrum: dN/dε ∝ε-2 εγ,max ~6 (B/uG) V10002 TeV tcool = 2×106 (εγ/GeV)-1/2 yr Lγ = Eγ / tdyn Totani & Kitayama 2000 ApJ, 545, 572
7
Properties of IC gamma-ray clusters
M~1015 Msun, z ~ Very short electron cooling time 100 Myr for GeV gamma-ray emitting electrons Much shorter than dynamical time ( ~Gyr) c.f. gamma-rays from hadronic processes Gamma-ray emission only from clusters with active shocks soon after dynamical formation An interesting probe of dynamical processes of structure formation In sharp contrast to longer time-scale emissions: Thermal x-ray emission Gamma-rays from hadronic processes
8
5% energy injection: reasonable?
Generally it is believed that supernova remnants produce cosmic-ray hadrons with efficiency of ~10% Energy flux of cosmic-ray electrons to the earth is only a few percent of protons. Propagation effect? Some indications for ~5% injection to electrons as well Radio flux from supernova remnants (e.g., Blandford & Eichler 1987) EUV/hard X-ray emission from clusters of galaxies (e.g., Sarazin 2001)
9
Some recent numerical studies
Keshet et al. 2003 ~10% contribution to extragalactic gamma-ray background Cannot explain all isotropic unidentified EG sources (~60) 5% efficiency assumed. Berrington & Dermer 2003 A few unidentifed EGRET sources possible
10
EGRET all sky survey (>100MeV)
11
EGRET source catalog
12
Unidentified sources:
Low galactic latitude (|b|<10°) Supernova remnants pulsars Early stars and winds mid galactic latitude (10°<| b| < 45°) Associated with the Gould belt Soft spectrum, steady source Pulsars? High galactic latitude (45°< |b|) Variable sources probably AGNs ~7 steady sources
13
Can we find gamma-ray clusters in other wavelength?
No significant correlation between un-ID EGRET sources and Abell or ROSAT clusters Not all un-ID EGRET sources should contain detectable clusters in other wavelength z ~0.05: comparable with the depth of Abell/ROSAT all-sky clusters Contamination of AGNs in high-latitude EGRET sources Forming/merging clusters may be more extended or not concentrated to the center more difficult to detect Gamma-rays expected only from dynamically forming/merging clusters. Not all clusters should be visible in gamma-rays Merging signatures in radio or X-ray bands have longer time scale than in gamma-rays
14
Search for gamma-ray clusters in the EGERET error circles
Search for forming/merging clusters by optical galaxy catalog (Kawasaki & Totani 2002, ApJ in press) Automated matched-filter search of galaxy clustering More systematic than the Abell catalog Search performed on high-latitude, steady un-ID EGRET sources 7 sources exist in the steady source catalog of Gehrels et al. We expect multiple groups or clusters of galaxies closely interacting, from hierarchical structure formation, rather than a single well-stabilized big cluster
15
Search for merging clusters in EGRET circles
Seven steady, |b|>45°unidentified sources Correlation with Abell clusters: 5 out of 7 associated with Abell clusters (1.7 sigma) Expected number by chance: 2.4 +/- 1.5 4076 clusters / 8.25 str < theta95> = 0.85 degree for EGRET sources 0.34 cluster per 1 EGRET circle
16
Matched filter search of galaxy clusters
α(deg)
17
Matched filter search of galaxy clusters (2)
Number of (single) clusters: 21 clusters found in 20.07□2 field around EGRET sources Control field: 133 clusters in □2 field Excess: ( )/16.41/2 = 1.6σ Cluster pairs/groups (CPGs) Expected from hierarchical structure formation Angular diameter < 2 Mpc/h Same z within uncertainty (typically 20%) z < 0.1
18
Matched-filter search for galaxy clusters (3)
6 cluster pairs/groups within 1 deg from centers of EGRET sources
19
Statistics of cluster pairs/groups
6 CPGs associated with 7 un-ID sources within 1 deg from the centers of EGRET sources 6 per □2 Control field: 12 per □2 field Excess: (6 – 1.5) / 1.51/2 = 3.7 σ Chance probability from Poisson statistics: 0.4%
20
Properties of cluster pairs/groups
Half of the 6 CPGs do not include any Abell clusters, but complexes of relatively small clusters ‘forming cluster’? Relatively large total richness/mass C= 79, 109, 128, 165, 206, 217 ~ 1015 Msun The mass and z consistent with Totani-Kitayama calculation Considerably larger than those in the control field: 62, 67, 90, 91, 92, 99, 102, 110, 111, 114, 119, 154 Chance probability of the same distribution: 8.0%
22
Detectability of TeV gamma-rays
Maximum gamma-ray energy: B~ 0.1 μG typically observed in clusters V~1000 km/s for typical clusters Spectrum extends to this energy with dN/dE ∝E-2 Motivation of CANGAROO observation: Detect extended TeV gamma-rays Expected size of emission region <~ 1 degree Image comparison with optical galaxy catalog
23
TeV Flux estimate for 3EG 1234-1318
Hard spectral index of /- 0.24 Rich structure from optical galaxy catalog EGRET: 7.3×10-8 cm-2s-1 VHE flux 3.2×10-12 cm-2s-1 (>TeV, α=2.09) = 3.5×10-13 cm-2s-1 (α= ) = 2.9×10-11 cm-2s-1 (α= )
24
Suggested TeV Observation Targets
Observability from CANGAROO Spectral index should be hard No variability evidence Rich structure in the optical richness map
25
Matched filter search of galaxy clusters
α(deg)
26
Additional objects at 30<|b|<45 deg
27
他の最近の観測的研究へのコメント Colafrancesco 2002 Scharf & Mukherjee 2002
UID EGRET sources と Abell cluster に相関 ガンマ、X、電波強度に相関 読んではいけない Scharf & Mukherjee 2002 EGRET data と Abell clusters を直接比較、相関 Reimer et al. とは矛盾 Reimer et al. 2003 X-ray selected clusters と EGRET ソースに相関なし 全ての銀河団を一緒にして上限値 <6 x 109 cm-2 s-1 for E>100 MeV
28
Effect of preheating of intergalactic medium
Cluster L-T relation suggests preheating of intergalactic gas by external entropy sources Self-similar
29
Effect of preheating of intergalactic medium(2)
Preheating effects on high energy gamma-rays: Reduced gravitational energy Softening of spectrum by weakened shock Gamma-ray background is suppressed by a factor of 30 5-10 Gamma-ray clusters still detectable by EGRET Totani & Inoue (2001)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.