Download presentation
Presentation is loading. Please wait.
Published byEdwin Hawkins Modified over 6 years ago
1
State the period, phase shift, and vertical shift
π π₯ =β5 sin ( 1 4 π₯βπ)
2
Period: 8pi Phase Shift: 4pi Vertical Shift: 0
3
State the period, phase shift, and vertical shift
4
Period: pi/4 Phase Shift: -2pi Vertical Shift: down 3
5
Write a single cosine function withβ¦
Amplitude = Β½ xβaxis reflection Period =4Ο Phase shift of Ο/2 radians -(1/2)cos(1/2(x-pi/2))
6
π¦=β 1 2 cosβ‘( 1 2 π₯β π 2 )
7
Write a single sine function withβ¦
Amplitude = 3 Period =Ο Vertical shift up 2 units 3sin(2x)+2
8
Y=3sin(2x)+2
9
Give the domain and range in proper interval notationβ¦
π π₯ =β5 sin ( 1 4 π₯βπ) D; all reals R: [-5,5]
10
Domain: ββ,β Range: [-5,5]
11
Give the domain and range in proper interval notationβ¦
π π₯ =2 cos π₯βπ +3 D; all reals R: [1,5]
12
Domain: ββ,β Range: [1,5]
13
Sketch the graph of, and state domain and range
π π₯ = cos β1 π₯ D: [-1,1] R: [0,pi]
15
Sketch the graph of, and state domain and range
π π₯ = sin β1 π₯ D: [-1,1] R: [-pi/2,pi/2]
17
Graph one period ofβ¦ f(x) = β2 cos( π π x β Ο/6) β 1
18
Graph one period ofβ¦ f(x) = β2 cos( π π x β Ο/6) β 1
19
List the asymptotes ofβ¦
f(x) = cscβ‘(π₯)
20
Asymptotes at 0+ππ
21
What is the amplitude of
π π₯ =β5 sin ( 1 4 π₯βπ)
22
What is the amplitude of
π π₯ =β5 sin ( 1 4 π₯βπ) Amplitude is positive 5
23
Match each of the 6 trig functions with the other trig function that shares the same domain
sin cos tan csc sec πππ‘
24
Match each of the 6 trig functions with the other trig function that shares the same domain
Sin cos tan csc sec πππ‘
25
Solve for the principle values
( sin π₯)(1+ cos π₯)=0
26
Solve for the principle values
( sin π₯)(1+ cos π₯)=0 X=0 and π
27
Solve for all values between [0,2π)
2 cos 2 π₯ +4 cos π₯ +2=0
28
Solve for all values between [0,2π)
2 cos 2 π₯ +4 cos π₯ +2=0 { π}
29
Solve for all values between [0,2π)
2 sin 2 π₯= sin π₯
30
Solve for all values between [0,2π)
2 sin 2 π₯= sin π₯ {0, π 6 , 5π 6 ,π}
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.