Presentation is loading. Please wait.

Presentation is loading. Please wait.

Frictional Heating During an Earthquake

Similar presentations


Presentation on theme: "Frictional Heating During an Earthquake"β€” Presentation transcript:

1 Frictional Heating During an Earthquake
By Yao Yu & Yue Du

2 Coseismic Temperature Increases During a Crack-like Rupture
v/2 - v/2 (Fialko, 2004) Heat transfer: 1-D diffusion equation πœ•π‘‡ πœ•π‘‘ =πœ… πœ• 2 𝑇 πœ• 𝑦 2 + 𝑄 π‘πœŒ

3 Solve for 1-D diffusion equation
Approach: Fourier Transform β„± πœ•βˆ†π‘‡ πœ•π‘‘ =β„± πœ… πœ• 2 βˆ†π‘‡ πœ• 𝑑 2 + 𝑄 π‘πœŒ =β„± πœ… πœ• 2 βˆ†π‘‡ πœ• 𝑑 2 +β„± 𝑄 π‘πœŒ β„± βˆ†π‘‡ =𝐹, β„± 𝑄 π‘πœŒ =𝐺 β„± πœ•βˆ†π‘‡ πœ•π‘‘ = πœ• πœ•π‘‘ β„± βˆ†π‘‡ = πœ• πœ•π‘‘ 𝐹 β„± πœ… πœ• 2 βˆ†π‘‡ πœ• 𝑦 2 = (𝑖2πœ‹π‘˜) 2 πœ…πΉ=βˆ’4 πœ‹ 2 π‘˜ 2 πœ…πΉ

4 πœ• πœ•π‘‘ 𝐹=βˆ’4 πœ‹ 2 π‘˜ 2 πœ…πΉ+𝐺 Integrating factor: 𝑒 4 πœ‹ 2 π‘˜ 2 πœ…π‘‘π‘‘ = 𝑒 4 πœ‹ 2 π‘˜ 2 πœ…π‘‘ 𝐹= 𝑒 βˆ’4 πœ‹ 2 π‘˜ 2 πœ…π‘‘ 0 𝑑 𝑒 4 πœ‹ 2 π‘˜ 2 πœ…πœ πΊπ‘‘πœ βˆ† 𝑇=𝑓 𝐹 = βˆ’βˆž ∞ 𝑒 βˆ’4 πœ‹ 2 π‘˜ 2 πœ…π‘‘ 0 𝑑 𝑒 4 πœ‹ 2 π‘˜ 2 πœ…πœ πΊπ‘‘πœ 𝑒 𝑖2πœ‹π‘˜π‘¦ π‘‘π‘˜ = βˆ’βˆž ∞ 0 𝑑 𝐺 𝑒 βˆ’4 πœ‹ 2 π‘˜ 2 πœ…(π‘‘βˆ’πœ) 𝑒 𝑖2πœ‹π‘˜π‘¦ π‘‘πœπ‘‘π‘˜ (1st order ODE)

5 Convolution theorem π‘“βˆ—π‘”= β„± βˆ’1 β„± 𝑓 βˆ™β„± 𝑔 βˆ† 𝑇= βˆ’βˆž ∞ 0 𝑑 𝐺 𝑒 βˆ’4 πœ‹ 2 π‘˜ 2 πœ…(π‘‘βˆ’πœ) 𝑒 𝑖2πœ‹π‘˜π‘¦ π‘‘πœπ‘‘π‘˜ Since β„± 𝑄 π‘πœŒ =𝐺,β„± 1 2 πœ‹πœ…(π‘‘βˆ’πœ) 𝑒 βˆ’ π‘₯ 2 4πœ…(π‘‘βˆ’πœ) = 𝑒 βˆ’4 πœ‹ 2 π‘˜ 2 πœ…(π‘‘βˆ’πœ) βˆ†π‘‡(𝑦,𝑑)= 1 2π‘πœŒ πœ‹πœ… 0 𝑑 βˆ’βˆž ∞ exp⁑ (π‘¦βˆ’πœ) 2 4πœ…(πœβˆ’π‘‘) 𝑄(𝜁,𝜏) π‘‘βˆ’πœ π‘‘πœπ‘‘πœ

6 Q - Rate of Frictional Heat Generation
Finite thickness: 2πœ” Velocity varies linearly across the fault zone: πœ•π‘‰ πœ•π‘¦ =π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ 𝑄= 𝜎 𝑠 2πœ” πœ•π· πœ•π‘‘ = πœ‡πœŽ 𝑛 2πœ” 𝑣 𝑄= πœ‡πœŽ 𝑛 𝑣 2πœ” , 𝑑>0, 𝑦 <πœ” 0, 𝑦 >πœ”

7 Solution βˆ†π‘‡ 𝑦,𝑑 = 1 2π‘πœŒ πœ‹πœ… 0 𝑑 βˆ’βˆž ∞ exp π‘¦βˆ’πœ 2 4πœ…(πœβˆ’π‘‘) 𝑄(𝜁,𝜏) π‘‘βˆ’πœ π‘‘πœπ‘‘πœ Substitute 𝑄= πœ‡πœŽ 𝑛 𝑣 2πœ” , 𝑑>0, 𝑦 <πœ” 0, 𝑦 >πœ” βˆ†π‘‡ 𝑦,𝑑 = πœ‡πœŽ 𝑛 𝑣 4π‘πœŒπœ” 0 𝑑 erf 𝑦+πœ” 2 πœ… π‘‘βˆ’πœ βˆ’ erf π‘¦βˆ’πœ” 2 πœ… π‘‘βˆ’πœ π‘‘πœ 0<𝑑< 𝑑 π‘š πœ‡πœŽ 𝑛 𝑣 4π‘πœŒπœ” 0 𝑑 π‘š erf 𝑦+πœ” 2 πœ… π‘‘βˆ’πœ βˆ’ erf π‘¦βˆ’πœ” 2 πœ… π‘‘βˆ’πœ π‘‘πœ 𝑑β‰₯ 𝑑 π‘š (in unit of J/m3/s)

8 Example Density 𝜌 2700 kg/m3 Heat capacity 𝑐 1 kJ/kg/K
Thermal diffusivity πœ… 1 mm2/s Coefficient of friction πœ‡ 0.6 Fault normal stress 𝜎 𝑛 100 MPa Slip velocity 𝑣 1 m/s Slip duration 𝑑 5 s

9 Finite thickness: 2πœ” = 1 mm & 2πœ” = 10 cm, at t = 5 s

10 i). Finite thickness: 2πœ” = 1 mm, t = 0-5 s

11 i). Finite thickness: 2πœ” = 1 mm, t = 0-20 s

12 ii). Finite thickness: 2πœ” = 10 cm, t = 0-5 s

13 ii). Finite thickness: 2πœ” = 10 cm, t = 0-5 s

14 Characteristic length: 2πœ…πœ β‰ˆ3.2 π‘šπ‘š
2𝑀 2πœ…πœ = 1π‘šπ‘š 3.2π‘šπ‘š β‰ˆ 0.31< 𝑀 2πœ…πœ =0.5, 1, 2, 5 2𝑀 2πœ…πœ = 10 π‘π‘š 3.2π‘šπ‘š β‰ˆ31≫1 2 Non-dimensional temperature increasement Non-dimensional distance Cardwell et al., 1978


Download ppt "Frictional Heating During an Earthquake"

Similar presentations


Ads by Google