Download presentation
Presentation is loading. Please wait.
Published byHannah Frei Modified over 6 years ago
1
Radiative Forcing and Global Warming Potentials due to CH4 and N2O
Workshop on common metrics to calculate the CO2 equivalence of anthropogenic greenhouse gas emissions by sources and removals by sinks Radiative Forcing and Global Warming Potentials due to CH4 and N2O Hua Zhang Ruoyu Zhang National Climate Center China Meteorological Administration April 3-4, 2012 Bonn, Germany
2
Outline Backgrounds Data & Methods Radiative forcings GWPs & GTPs
1 Backgrounds 2 Data & Methods 2 Radiative forcings 3 GWPs & GTPs 4 Discussion 5
3
Concentrations of main GHGs before 2005
Backgrounds Concentrations of main GHGs before 2005 CH4 (pptv) C02 (ppmv) N20 (pptv) year(before 2005)
4
Concentrations of main GHGs under SRES scenarios
5
Backgrounds 气候变化的一种机制 通过辐射传输过程
6
Radiative forcing (RF)
Methods Radiative forcing (RF)
7
Time-decaying functions
Methods Radiative efficiency Time-decaying functions GWP RF of GHG x RF of CO2 1 GWP is related to emission process of GHG; 2 GWP can convert any kind of GHG equivalently to CO2 emission, which makes the comparison easily among different gases; 3 GWP denotes the cumulative climate effect of the GHG during a period of time.
8
Surface temperature changes
Methods GTP T changes with time Surface temperature changes T arrives at balance not varying 1 GTP refers to emission process of GHGs too ; 2 GTP can convert any kind of GHGs equivalently to CO2 emission too; GTP denotes the effect of GHG on the temperature changes of the earth-atmosphere system.
9
Radiative Transfer Model
Model & Data Radiative Transfer Model (Zhang et al., 2003; 2006a,b) 998-band longwave radiative transfer scheme (high resolution) 10~49000cm-1 (0.2~1000µm) is divided into 998 bands longwave region 10~2500cm-1(4~1000µm) is 498 bands with intervals of 5cm-1
10
Gas molecular spectrum data Atmosphere profiles data
Model & Data 辐射传输模式 Gas molecular spectrum data 辐射传输模式 辐射传输模式 辐射传输模式 辐射传输模式 HITRAN2004 Atmosphere profiles data 6 kinds of typical model atmosphere : TRO、MLS、MLW、SAS、SAW、USS Clouds ISCCP D2 products
11
Criterion: to judge whether the system reaches to balance
Iteration to calculate ARF Temperature profile T0(L) kn=0 Radiative Transfer Model (Zhang et al.,2006) Radiative Transfer Model (Zhang et al.,2006) Heating rate for zero concentration: htr0(L) Heating rate for 0.1 ppbv concentration: htr1(L) iterationkn=kn+1 Criterion: to judge whether the system reaches to balance kn=0 Heating rate Htrdif(L)=htr1(L) - htr0(L) Instantaneous RF htrdif(L)<ξ N Tnew(L)=Told(L)+htrdif(L)×△t L:from Tropopause to TOA Y Adjusted RF
12
Doubled CO2 , H2O increase by 20%
Model tests Doubled CO2 Doubled CO2 , H2O increase by 20% Model layer 998-band AOGCMs LBL TOM 3.03 2.45 2.8 3.26 3.75 3.78 200 hPa 5.6 5.07 5.48 4.13 4.45 4.57 Surface 1.7 1.12 1.64 11.14 11.95 11.52 (1)CO2 concentration is doubled from 287 ppmv to 574 ppmv; (2)With doubled CO2 concentration (574 ppmv), H2O content is increased by 20% of its concentration of 1860 year
13
Results Radiative efficiency Gas Clear sky Cloudy sky IPCC 2007 IRE
ARE ARE after lifetime- adjustment CO2 1.99E-5 1.88E-5 1.64E-5 1.57E-5, % 1.4E-5 CH4 5.13E-4 5.06E-4 4.14E-4 3.73E-4, +0.8% 3.7E-4 N2O 3.87E-3 3.79E-3 3.13E-3 2.98E-3, -1.4% 3.03E-3 * unit:W·m-2·ppbv-1 ** Lifetime : CO2 : 120a ; CH4 : 12a ; N2O : 114a
14
Radiative forcings (ARF)
Results Radiative forcings (ARF) Gas 2005 2010 IPCC 2007 before adjustment After Before CO2 1.89 1.81 2.04 1.95 1.66±0.17 CH4 0.581 0.523 0.583 0.525 0.48±0.05 N2O 0.185 0.177 0.187 0.179 0.16±0.02 * unit:W·m-2 ** Lifetime : CO2 : 120a ; CH4 : 12a ; N2O : 114a
15
Results IPCC : 1.5~4.5K Climate sensitivity parameter : λ
Its typical value is chosen as 0.5K·(W·m-2)-1 Original concentration of CO2 : ppmv Then: IPCC : 1.5~4.5K Concentration ARF / W m-2 Temperature Changes / K CO2×1.5 2.8 1.4 CO2×2.0 4.8 2.4 CO2×2.5 6.4 3.2 CO2×3.0 7.8 3.9 CO2×3.5 9.0 4.5 CO2×4.0 9.8 4.9
16
Results ARF fitting formula C : CO2 concentration;
C0 : background CO2 concentration, C0 = ppmv; fitting parameters : α=6.2554, β=5.2783×10-2
17
Results 6种大气廓线下 ARF fitting formula
CH4 background concentration M0=1797ppbv; 0≤M0,N0≤10000 ppbv ; fitting parameters : α= , β=1.439×10-4, γ=-1.133×10-3, δ=1.221×10-7 N2O background concentration N0=321.8ppbv 0≤M0,N0≤10000 ppbv; fitting parameters : α= , β=0.0011 γ= ×10-4, δ= ×10-9
18
Results Test of fitting * Shi et al., absolute error≤0.05 W m-2
Test issue Model results / W m-2 Formula results Absolute error CO2×2 + CH4×2 + N2O×2 6.07 6.05 0.02 CO2×2 + CH4×1 + N2O×1 4.70 4.76 0.06 CO2×2 + CH4×2 + N2O×1 5.36 5.30 CO2×1 + CH4×2 + N2O×2 1.32 1.29 0.03 * Shi et al., absolute error≤0.05 W m-2
19
Results before atmospheric lifetime adjustment
Gas GWP IPCC 2007 GTPP GTPS 20 / 100 / 500 CH4 50 / 17 / 5.3 72 / 25 / 7.6 41 / 0.26 / ~0 56 / 19 / 5.4 N2O 258 / / 137 289 / 298 / 153 268 / 233 / 11 250 / 269 / 139 after atmospheric lifetime adjustment 气体 GWP IPCC 2007 GTPP GTPS 20 / 100 / 500 CH4 47 / 16 / 5 72 / 25 / 7.6 39 / 0.24 / ~0 53 / 18 / 5 N2O 257 / 266 / 136 289 / 298 / 153 268 / 233 / 11 250 / 268 / 138
20
Analytical calculation
Results For comparison : Shine(2005)results Gas Analytical calculation EBM GTPP GTPS 20 / 100 / 500 CH4 52 / 0.35 / 0 69 / 24 / 7 46 / 5 / 0.8 66 / 25 / 8 N2O 290 / 270 / 13 260 / 290 / 160 290 / 270 / 35 270 / 290 / 160
21
After the lifetime-adjustment Atmosphere lifetime /a
Gas Atmosphere lifetime /a AGWP / 10-14·W·m-2·kg-1 20 / 100 / 500 CO2 120 2.72 / 9.57 / 31.5 CH4 12 127.7 / / 157.4 N2O 114 700.3 / 2542 / 4298 HFC-32 4.9 6613 / 6727 / 6727 HFC-125 29 19971 / / 40083 HFC-134 10 12962 / / 14991 HFC-134a 14 12320 / / 16204 HFC-143a 52 24107 / / 75499 HFC-152a 1.4 1573 / 1573 / 1573 C2F6 10000 28168 / / 68757 CF4 50000 12527 / / SF6 3200 52193 / /
22
Results Before atmospheric lifetime adjustment
Gas AGTPP / 10-16·K·kg-1 AGTPS / 10-14·K·kg-1 20 / 100 / 500 CH4 372 / 1.62 / ~0 73.8 / / 139.7 N2O 2419 / 1465 / 43.9 328.9 / 1972 / 3593 CO2 9.04 / 6.28 / 3.89 1.31 / 7.34 / 25.9 After atmospheric lifetime adjustment Gas AGTPP / 10-16·K·kg-1 AGTPS / 10-14·K·kg-1 20 / 100 / 500 CH4 336 / 1.46 / ~0 66.5 / / 125.9 N2O 2312 / 1401 / 41.9 314 / 1884 / 3434 CO2 8.64 / 6.01 / 3.72 1.26 / 7.02 / 24.8
23
Results Gas AGTPP / 10-16·K·kg-1 AGTPS / 10-14·K·kg-1 20 / 100 / 500
HFC-32 16834 / 10.2 / ~0 5209 / 7118 / 7119 HFC-125 80622 / 7321 / 0.008 12550 / / 42393 HFC-134 35691 / 59.9 / ~0 8093 / / 14021 HFC-134a 44445 / 361 / ~0 8322 / / 17160 HFC-143a 46423 / / 5.9 13945 / / 75986 HFC-152a 2755 / 1.5 / ~0 1376 / 1669 / 1669 C2F6 / / 16213 / / CF4 51547 / / 60241 6683 / / SF6 / / 30283 / /
24
AGTPP of CH4 & N2O AGTPS of CH4 & N2O
25
AGTPP of CO2 AGTPS of CO2 Temperature changes (10-16K)
Time (a) AGTPS of CO2 Time (a)
26
Discussion The lifetimes of CH4 are relatively short-lived GHGs; GWP greatly over-estimates the effects of their pulse emission on climate changes. GTPp is an optimal metric for assessing the long-term effects of CH4 emissions on global climate change, by considering practical emissions of these gases.
27
Climate sensitivity parameter λ can affect AGWP and AGTP greatly, this should be considered as a large uncertainty in estimating process. AGWPs and AGTPs of long-lived GHGs are sensitive to time horizon; while AGTPp of short-lived GHGs is sensitive to time horizon greatly. Clouds is another large factor of uncertainties in estimating GWP or GTP and should be clarified in IPCC AR5 report.
28
Thanks! 28
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.