Download presentation
Presentation is loading. Please wait.
Published byAhti Koskinen Modified over 6 years ago
1
Day 2: September 10, 2010 Transistor Introduction
ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 2: September 10, 2010 Transistor Introduction Penn ESE370 Fall DeHon
2
Today MOSFET Capacitive and resistive loads Simplified models
Zero-th order model Good enough for ??? First order model There are always Rs and Cs Penn ESE370 Fall DeHon
3
MOSFET Metal Oxide Semiconductor Field Effect Transistor New device
Primary active component for the term Three terminal device Voltage at gate controls conduction between two other terminals (source, drain) Penn ESE370 Fall DeHon
4
MOSFET I vs. Vgs, Vds Penn ESE370 Fall DeHon
5
MOSFET I vs. Vgs, Vds Will dig into understanding during term
Today simple ways to reason about gross behavior Static/DC Penn ESE370 Fall DeHon
6
Preclass What voltage do the cases converge to?
Penn ESE370 Fall DeHon
7
Penn ESE370 Fall DeHon
8
Penn ESE370 Fall DeHon
9
Penn ESE370 Fall DeHon
10
Penn ESE370 Fall DeHon
11
Penn ESE370 Fall DeHon
12
Penn ESE370 Fall DeHon
13
Penn ESE370 Fall DeHon
14
Conclude? DC/Steady-State Ignore the capacitors
Penn ESE370 Fall DeHon
15
Quasistatic Static – inputs (and circuit) unchanging, how does it settle? Dynamic – what happens when things change Quasi-Static – inputs transition, circuit responds, and settles Dynamic transition to roughly static states Penn ESE370 Fall DeHon
16
Quasistatic Relevance?
How relevant to a combinational digital circuit? How relevant to a clocked digital circuit? Penn ESE370 Fall DeHon
17
Zero-th Order MOSFET Ideal Switch Vgs > Vth conducts
Vgs < Vth does not conduct Vth – threshold voltage Penn ESE370 Fall DeHon
18
Zero-th Order MOSFET Penn ESE370 Fall DeHon
19
N-Type, P-Type N – negative carriers Switch turned on positive Vgs
electrons Switch turned on positive Vgs P – positive carriers holes Switch turned on negative Vgs Vth<0 Vgs<Vth to to conduct Penn ESE370 Fall DeHon
20
Why useful? Penn ESE370 Fall DeHon
21
What happens when Vin=Vdd>Vth
Penn ESE370 Fall DeHon
22
What happens when Vin=Vdd>Vth
Vgs=Vdd > Vth Penn ESE370 Fall DeHon
23
What happens when Vin=Vdd>Vth
Vgs=Vdd > Vth Penn ESE370 Fall DeHon
24
What happens when Vin=Vdd>Vth
Vgs=0 > Vth Vgs=Vdd > Vth Penn ESE370 Fall DeHon
25
What happens when Vin=Vdd>Vth
Vgs=0 > Vth Vgs=Vdd > Vth Penn ESE370 Fall DeHon
26
What happens when Vin=Vdd>Vth
Vgs=0 > Vth V2=Gnd Vgs=Vdd > Vth Penn ESE370 Fall DeHon
27
What happens when Vin=Vdd>Vth
Vgs=0 > Vth V2=Gnd Vgs=0 < Vth Vgs=Vdd > Vth Penn ESE370 Fall DeHon
28
What happens when Vin=Vdd>Vth
Vgs=-Vdd < Vth Vgs=0 > Vth V2=Gnd Vgs=0 < Vth Vgs=Vdd > Vth Penn ESE370 Fall DeHon
29
What happens when Vin=Vdd>Vth
Vgs=-Vdd < Vth Vgs=0 > Vth Vout=Vdd V2=Gnd Vgs=0 < Vth Vgs=Vdd > Vth Penn ESE370 Fall DeHon
30
What happens when Vin=0<Vth
Penn ESE370 Fall DeHon
31
What happens when Vin=0<Vth
V2=Vdd Vout=0 Penn ESE370 Fall DeHon
32
What function? Buffer Vin=Vdd Vout=Vdd Vin=0 Vout=0
Penn ESE370 Fall DeHon
33
Why Useful? Allows us to reason (mostly) at logic level about steady-state functionality of typical gate circuits Penn ESE370 Fall DeHon
34
Why adequate? Static analysis – can ignore capacitors
Capacitive loads – resistances don’t matter Feed forward for gates – don’t generally have loops can work forward from known values Logic drive rail-to-rail Don’t have to reason about intermediate voltage levels Penn ESE370 Fall DeHon
35
What not tell us? Delay Dynamics Behavior if not Capacitively loaded
Loops Penn ESE370 Fall DeHon
36
First Order Model Switch Loads input capacitively
Has finite drive strength Penn ESE370 Fall DeHon
37
First Order Model Penn ESE370 Fall DeHon
38
First Order Model Penn ESE370 Fall DeHon
39
Refine to First Order Penn ESE370 Fall DeHon
40
Zero-th Order Tells us how switches set (Vin=0)
V2=Vdd Vout=0 Penn ESE370 Fall DeHon
41
Zero-th Order Tells us how switches set (Vin=0)
V2=Vdd Vout=0 Penn ESE370 Fall DeHon
42
Zero-th Order Tells us how switches set (Vin=0)
Leaves an RC Circuit we can analyze Penn ESE370 Fall DeHon
43
Zero-th Order Tells us how switches set (Vin=0)
Look at middle stage Penn ESE370 Fall DeHon
44
What more this tell us? Delay Quastistatic behavior
Voltage settling with resistive loads At least some basis for reasoning Penn ESE370 Fall DeHon
45
What is this leaving out?
Penn ESE370 Fall DeHon
46
What is this leaving out?
Penn ESE370 Fall DeHon
47
What leaving out? What happens at intermediate voltages
Not rail-to-rail Details of dynamics, including… Input not transition as step Intermediate drive strengths change with Vgs As output charges Vds changes, changing drive strenght Isn’t really 0 current below threshold Penn ESE370 Fall DeHon
48
Engineering Control Vth – process engineer
Drive strength – circuit engineer control with sizing Supply voltages – range set by process, detail use by circuit design Penn ESE370 Fall DeHon
49
Engineering Control: Threshold
Penn ESE370 Fall DeHon
50
Engineering Control: Drive Strength
Penn ESE370 Fall DeHon
51
Wire Capacitance Penn ESE370 Fall DeHon
52
Wire Capacitance Penn ESE370 Fall DeHon
53
Wire Resistance Penn ESE370 Fall DeHon
54
Wire Resistance Penn ESE370 Fall DeHon
55
Wire Resistance Sanity check Wire twice as long = resistors in series
Wire twice as wide = resistors in parallel Penn ESE370 Fall DeHon
56
There are always Rs and Cs
Modeling vs. discrete components Dominant effects Rbig + Rsmall ≈ Rbig Cbig || Csmall ≈ Csmall Penn ESE370 Fall DeHon
57
Admin TA: Andrew Townley Lecture Monday: building gates
atownley seas Office Hours: Lecture Monday: building gates Reading Lab on Wednesday Penn ESE370 Fall DeHon
58
MOSFET Penn ESE370 Fall DeHon
59
Big Ideas MOSFET Transistor as switch
Purpose-driven simplified modeling Aid reasoning Sanity check Simplify design New perspective on Rs and Cs Penn ESE370 Fall DeHon
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.