Download presentation
Presentation is loading. Please wait.
1
Lesson 10.5 Polyhedra pp
2
Objectives: 1. To classify hexahedra and define related terms.
2. To prove theorems for parallelpipeds. 3. To state and apply Euler’s formula.
3
Definition A polyhedron is a closed surface made up of polygonal regions.
4
Definition A parallelepiped is a hexahedron in which all faces are parallelograms. A diagonal of a hexahedron is any segment joining vertices that do not lie on the same face.
5
parallelepiped A D B C AD is a diagonal
6
parallelepiped A D B C AC is not a diagonal
7
A B C D AB is an edge of the cube; AC is a diagonal of the square face of the cube; AD is a diagonal of the cube.
8
Definition Opposite faces of a hexahedron are faces with no common vertices. Opposite edges of a hexahedron are two edges of opposite faces that are joined by a diagonal of the parallelepiped.
9
parallelepiped F E A D H G B C ABCD & EFGH are opposite faces
10
parallelepiped F E A D H G B C ABCD & CDFG are not opposite faces
11
parallelepiped F E A D H G B C
12
parallelepiped F E A D H G B C BC & EF are opposite edges
13
parallelepiped F E A D H G B C BC & AD are not opposite edges
14
Theorem 10.16 Opposite edges of a parallelepiped are parallel and congruent.
15
Theorem 10.17 Diagonals of a parallelepiped bisect each other.
16
Theorem 10.18 Diagonals of a right rectangular prism are congruent.
17
Euler’s Formula V - E + F = 2 where V, E, and F represent the number of vertices, edges, and faces of a convex polyhedron respectively.
18
Euler’s formula applies not only to parallelepipeds but to all convex polyhedra.
19
Tetrahedron V = 4 E = 6 F = 4 V - E + F = 2 V = E = F = V - E + F =
20
Octahedron V = 6 E = 12 F = 8 V - E + F = 2 V = E = F = V - E + F =
21
Homework pp
22
►A. Exercises For each decahedron below, determine the number of faces, edges, and vertices. Check Euler’s formula for each. 7.
23
7.
24
►B. Exercises Each exercise below refers to a prism having the given number of faces, vertices, edges, or sides of the base. Determine the missing numbers to complete the table below. Draw the prism when necessary; find some general relationships between these parts of the prism to complete exercise 18.
25
►B. Exercises F V S E Example 17. 8
26
13. Faces (F) = 7 Vertices (V) = 10 Sides of the base (S) = Edges (E) = 5 15
27
►B. Exercises F V n E Example 17. 8 18. n
28
17. Faces (F) = 8 Vertices (V) = Sides of the base (S) = Edges (E) = 12 6 18
29
►B. Exercises F V n E Example 18. n
30
■ Cumulative Review 24. Find the area.
Do not solve exercises below, but write (in complete sentences) what you would do to solve them. 24. Find the area. A B C D E
31
■ Cumulative Review 25. Prove that A B.
Do not solve exercises below, but write (in complete sentences) what you would do to solve them. 25. Prove that A B. A B C D E
32
■ Cumulative Review Do not solve exercises below, but write (in complete sentences) what you would do to solve them. 26. Find the distance between two numbers a and b on a number line.
33
■ Cumulative Review 27. True/False: Water contains helium or hydrogen.
Do not solve exercises below, but write (in complete sentences) what you would do to solve them. 27. True/False: Water contains helium or hydrogen.
34
■ Cumulative Review Do not solve exercises below, but write (in complete sentences) what you would do to solve them. 28. When are the remote interior angles of a triangle complementary?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.