Presentation is loading. Please wait.

Presentation is loading. Please wait.

CIS601: Object-Oriented Programming in C++

Similar presentations


Presentation on theme: "CIS601: Object-Oriented Programming in C++"— Presentation transcript:

1 CIS601: Object-Oriented Programming in C++
Lesson #1 Note: CIS 601 notes were originally developed by H. Zhu for NJIT DL Program. The notes were subsequently revised by M. Deek.

2 Contact Information Web:

3 Goals for the Course To understand Object Oriented programming
To further develop your C++ skills

4 Course Coverage Fundamentals of object-oriented programming
*Data abstraction *Encapsulation *Inheritance *Dynamic binding *Polymorphism

5 Course Coverage cont. C++ will be used as a vehicle to illustrate and implement OOP concepts. Object-oriented paradigm will be applied to design and programming.

6 Course Coverage cont. Effects of OO methodology on software design
maintenance extensibility reusability

7 Prerequisites Working knowledge of C/C++
Familiarity with operating systems Familiarity with compilers

8 Lectures 1. Introduction to Object-Oriented Programming
2. Overview of basic structures of C++ 3. Objects and Classes 4. Objects and Classes in C++ 5. Inheritance 6. Inheritance in C++ 7. Polymorphism and That in C++

9 Lectures cont. 8. Operator Overloading in C++
9. Templates and Friends in C++ 10. I/O Streams in C++ 11. Exception Handling in C++ 12. Container Classes in C++ 13. Object-Oriented Analysis and Design 14. Case Studies and Review

10 Thinking Methodology Induction From specialization to generalization
to create the word “dog” from different dogs Dog

11 Thinking Methodology Deduction(infer)
From generalization to specialization From the word “dog” you have learned that an animal is or is not a dog. DOG

12 Design Methodologies Functional decomposition (Top-Down)
The whole system is characterized by a single function, and then the function is decomposed into a set of functions in a process of stepwise refinement.

13 Functional decomposition
The System Studying Function1 Function2 Function3 Desk Table top Filing cabinet Bookshelves Function11 Function12 Left drawer Middle drawer Right drawer

14 Design Methodologies Functional composition (bottom-up)
To create different components of a function from a library of functions. To integrate components into a module and form a more significant function.

15 Functional composition
The System Studying Function1 Function2 Function3 Desk Table top Filing cabinet Bookshelves Function11 Function12 Left drawer Middle drawer Right drawer

16 Functional (De)Composition
Modules with well-defined semantics that can be directly implemented. Procedures own the data. Data plays a secondary role. Does not necessarily reflect the states of abstraction in the application.

17 Object-Orientation A thinking methodology Everything is an object.
Any system is composed of objects (a system is also an object). The evolution and development of a system is caused by the interactions of the objects inside/outside a system.

18 Everything is an object
A student, a professor A desk, a chair, a classroom, a building A university, a city, a country The world, the universe A subject such as CS, IS, Math, History, …

19 Systems are composed of objects
An educational system An economic system An information system A computer system

20 The development of a system is caused by interactions
NJIT is defined by the interactions among: students professors staff Board governance State governance … ... Inside NJIT Outside NJIT

21 Design Methodologies Object-Orientation is a design methodology(OOA/OOD) Objects are the building blocks of a program (interface, editor, menu, file, etc.); data managing object (db), etc.) Objects represent real-world abstractions within an application.

22 Design Methodologies Object-orientation supports
induction: objects -> a class This needs tools and deduction: a class ->objects This needs programmers

23 Design Methodologies Object-orientation supports
Top-down: from a super-class to sub-classes Bottom-up: from sub-classes to a super-class

24 Programming Techniques
The evolution of programming techniques is to make languages more expressive to control complex systems more easily

25 Abstract Data Types(ADTs)
Abstraction Properties Abstract Data Types and Object-Orientation

26 Abstraction to understand a problem by separating necessary from unnecessary details To define the interface to a data abstraction without specifying implementation detail.

27 Abstraction Problem Model

28 Properties of ADT With abstraction, you create a well-defined entity
These entities define the data structure as a set of items. For example, each employee has a name, date of birth, and social number...

29 Properties of ADT(Cont.)
The data structure can only be accessed with defined operations. This set of operations is called the interface An entity with these properties is called an abstract data type (ADT).

30 Abstract Data Type ADT Abstract Data Structure Interface Operations

31 Definition (ADT) ADT is characterized by the following properties:
1. It exports a type. 2. It exports a set of operations. 3. Operations of the interface are the only access mechanism to the data structure. 4. Axioms and preconditions define the application domain of the type.

32 Example: ADT List Type List.
The interface to instances of type List is defined by the interface definition file. Operations: insert, get, append, delete, search,…

33 List The application domain is defined by the semantical meaning of the provided operations. Axioms and preconditions include statements such as ``An empty list is a list.'' ``Let l=(d1, d2, d3, ..., dN) be a list. Then l.append(dM) results in l=(d1, d2, d3, ..., dN, dM).'' ``an element of a list can only be deleted if the list is not empty.''

34 Encapsulation Combines the data and the operations
Encloses both variables and functions Keeps details of data and operations from the users of the ADT

35 Encapsulation (cont.) Allows for modularity Controls access to data
Separates implementation from interface Extends the built-in types

36 Object-Oriented Programming
Objects are derived from ADTs. Interacting objects handle their own house-keeping. Objects in a program interact by sending messages to each other.

37 Object1 Data1+Procedures1 Object2 Data2 + Procedures2 Data Data1 Object3 Data3 + Procedures3 Object4 Data4 + Procedures4

38 Object-Oriented Programming
Each object is responsible to initialize and destroy itself. Therefore, there is no need to explicitly call a creation or termination procedure.

39 ADT and Object-Orientation
ADTs allow for the creation of instances with well-defined properties and behavior. In object-orientation, ADTs are referred to as classes. Therefore, a class defines the properties of objects called instances.

40 ADT and Object-Orientation
ADTs define functionality by emphasizing the involved data, their structure, operations, axioms and preconditions. Object-oriented programming is ``programming with ADTs'': combining functionality of different ADTs to solve a problem. Therefore, instances (objects) of ADTs (classes) are dynamically created, destroyed and used.

41 Inheritance(Hierarchy)
Expresses commonality among objects Allows code reusability Highlights Generalization/Specialization relationships

42 Polymorphism The ability of objects to respond differently to the same message or function call.

43 Object-Orientation Evolution
Modules Information hiding Data encapsulation Abstract data types Objects

44 Remember: Encapsulation (Data & Operations)-- A technique for Information Hiding. The users of the objects do not need to know the details of the data and operations of the objects. Data Abstraction -- the procedure to define a class from objects. Abstract Data Type-- Class.

45 Objects and Large Software Systems
Object view Makes systems more understandable Unifies design and programming methods Initial program thoughts are informal objects-and-interactions, even when using non-OO languages.

46 Objects and Large Software Systems
Divides code into logical chunks Allows for "off-the-shelf" code libraries to be reused Supports code evolution: internals can always be re-written as long as interface stays the same

47 Reading Chapter 1 Sections Chapter 5 Sections


Download ppt "CIS601: Object-Oriented Programming in C++"

Similar presentations


Ads by Google