Presentation is loading. Please wait.

Presentation is loading. Please wait.

Example I: F.T. Integration Property

Similar presentations


Presentation on theme: "Example I: F.T. Integration Property"β€” Presentation transcript:

1 Example I: F.T. Integration Property
𝑑 𝑀(𝑑) 𝐴 βˆ’π΄ 𝑏 π‘Ž βˆ’π‘ βˆ’π‘Ž Example I: F.T. Integration Property 𝐴 π‘βˆ’π‘Ž βˆ’π΄ π‘Ž 𝑦 𝑑 = 𝐴 π‘βˆ’π‘Ž 𝛿 𝑑+𝑏 βˆ’ 𝑏𝐴 π‘Ž π‘βˆ’π‘Ž 𝛿 𝑑+π‘Ž + 𝑏𝐴 π‘Ž π‘βˆ’π‘Ž 𝛿 π‘‘βˆ’π‘Ž π‘‘βˆ’π‘Ž βˆ’ 𝐴 π‘βˆ’π‘Ž 𝛿 π‘‘βˆ’π‘ π‘Œ πœ” = 𝐴 π‘βˆ’π‘Ž 𝑒 π‘—πœ”π‘ βˆ’ 𝐴 π‘βˆ’π‘Ž 𝑒 βˆ’π‘—πœ”π‘ βˆ’ 𝑏𝐴 π‘Ž π‘βˆ’π‘Ž 𝑒 π‘—πœ”π‘Ž + 𝑏𝐴 π‘Ž π‘βˆ’π‘Ž 𝑒 βˆ’π‘—πœ”π‘Ž π‘Œ(πœ”) = π‘—πœ”2𝐴𝑏 π‘βˆ’π‘Ž sin π‘πœ” π‘πœ” βˆ’ π‘—πœ”2𝐴𝑏 π‘βˆ’π‘Ž sin π‘Žπœ” π‘Žπœ” 𝑋 πœ” = π‘Œ πœ” π‘—πœ” +πœ‹ π‘Œ 0 𝛿(πœ”)= 2𝐴𝑏 π‘βˆ’π‘Ž 𝑠𝑖𝑛𝑐 π‘πœ” βˆ’π‘ π‘–π‘›π‘ π‘Žπœ” π‘Š πœ” = 𝑋 πœ” π‘—πœ” +πœ‹ 𝑋 0 𝛿(πœ”) π‘Š(πœ”)= 2𝐴𝑏 π‘—πœ”(π‘βˆ’π‘Ž) 𝑠𝑖𝑛𝑐 π‘πœ” βˆ’π‘ π‘–π‘›π‘ π‘Žπœ” π‘Š(πœ”)= 2𝐴𝑏 πœ” π‘βˆ’π‘Ž [𝑠𝑖𝑛𝑐(π‘πœ”)βˆ’π‘ π‘–π‘›π‘(π‘Žπœ”)] 𝑒 βˆ’ π‘—πœ‹ 2 𝑑 π‘₯(𝑑) 𝑏 π‘Ž βˆ’π‘ βˆ’π‘Ž 𝐴 π‘βˆ’π‘Ž βˆ’π΄ π‘Ž 𝑑 𝑦(𝑑) 𝑏 π‘Ž βˆ’π‘ βˆ’π‘Ž 𝑏𝐴 π‘Ž(π‘βˆ’π‘Ž) βˆ’π΄ (π‘βˆ’π‘Ž) βˆ’π‘π΄ π‘Ž(π‘βˆ’π‘Ž) 𝐴 (π‘βˆ’π‘Ž)

2 Example II: F.T. Integration Property

3 Example: The F.T. of a periodic signal
𝑔 𝑑 =π΄π‘Ÿπ‘’π‘π‘‘( 𝑑 𝑇 ) 𝐺 πœ” =𝐴𝑇𝑠𝑖𝑛𝑐( π‘‡πœ” 2 ) 𝐹 πœ” = 𝑛=βˆ’βˆž ∞ πœ” 0 𝐺 𝑛 πœ” 0 𝛿(πœ”βˆ’π‘› πœ” 0 ) 𝐹(πœ”)= 𝑛=βˆ’βˆž ∞ π΄π‘‡πœ” 0 𝑠𝑖𝑛𝑐 𝑛 πœ” 0 𝑇 2 𝛿(πœ”βˆ’π‘› πœ” 0 ) The frequency spectra of periodic signals are made up of discrete frequency components in the form of impulses occurring at integer multiples (harmonics) of the fundamental frequency of the signal. The weight of each impulse is found by multiplying the F.T of the generating function, evaluated at that harmonic frequency, by the fundamental frequency of the periodic signal.


Download ppt "Example I: F.T. Integration Property"

Similar presentations


Ads by Google