Download presentation
Presentation is loading. Please wait.
1
Example I: F.T. Integration Property
π‘ π€(π‘) π΄ βπ΄ π π βπ βπ Example I: F.T. Integration Property π΄ πβπ βπ΄ π π¦ π‘ = π΄ πβπ πΏ π‘+π β ππ΄ π πβπ πΏ π‘+π + ππ΄ π πβπ πΏ π‘βπ π‘βπ β π΄ πβπ πΏ π‘βπ π π = π΄ πβπ π πππ β π΄ πβπ π βπππ β ππ΄ π πβπ π πππ + ππ΄ π πβπ π βπππ π(π) = ππ2π΄π πβπ sin ππ ππ β ππ2π΄π πβπ sin ππ ππ π π = π π ππ +π π 0 πΏ(π)= 2π΄π πβπ π πππ ππ βπ πππ ππ π π = π π ππ +π π 0 πΏ(π) π(π)= 2π΄π ππ(πβπ) π πππ ππ βπ πππ ππ π(π)= 2π΄π π πβπ [π πππ(ππ)βπ πππ(ππ)] π β ππ 2 π‘ π₯(π‘) π π βπ βπ π΄ πβπ βπ΄ π π‘ π¦(π‘) π π βπ βπ ππ΄ π(πβπ) βπ΄ (πβπ) βππ΄ π(πβπ) π΄ (πβπ)
2
Example II: F.T. Integration Property
3
Example: The F.T. of a periodic signal
π π‘ =π΄ππππ‘( π‘ π ) πΊ π =π΄ππ πππ( ππ 2 ) πΉ π = π=ββ β π 0 πΊ π π 0 πΏ(πβπ π 0 ) πΉ(π)= π=ββ β π΄ππ 0 π πππ π π 0 π 2 πΏ(πβπ π 0 ) The frequency spectra of periodic signals are made up of discrete frequency components in the form of impulses occurring at integer multiples (harmonics) of the fundamental frequency of the signal. The weight of each impulse is found by multiplying the F.T of the generating function, evaluated at that harmonic frequency, by the fundamental frequency of the periodic signal.
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.