Presentation is loading. Please wait.

Presentation is loading. Please wait.

Lecture 16 Bubble Sort Merge Sort.

Similar presentations


Presentation on theme: "Lecture 16 Bubble Sort Merge Sort."— Presentation transcript:

1 Lecture 16 Bubble Sort Merge Sort

2 Bubble Sort

3 Sorting Sorting takes an unordered collection and makes it an ordered one. 77 42 35 12 101 5 5 12 35 42 77 101

4 "Bubbling Up" the Largest Element
Traverse a collection of elements Move from the front to the end “Bubble” the largest value to the end using pair-wise comparisons and swapping 77 42 35 12 101 5

5 "Bubbling Up" the Largest Element
Traverse a collection of elements Move from the front to the end “Bubble” the largest value to the end using pair-wise comparisons and swapping Swap 42 77 77 42 35 12 101 5

6 "Bubbling Up" the Largest Element
Traverse a collection of elements Move from the front to the end “Bubble” the largest value to the end using pair-wise comparisons and swapping Swap 35 77 42 77 35 12 101 5

7 "Bubbling Up" the Largest Element
Traverse a collection of elements Move from the front to the end “Bubble” the largest value to the end using pair-wise comparisons and swapping Swap 12 77 42 35 77 12 101 5

8 "Bubbling Up" the Largest Element
Traverse a collection of elements Move from the front to the end “Bubble” the largest value to the end using pair-wise comparisons and swapping 42 35 12 77 101 5 No need to swap

9 "Bubbling Up" the Largest Element
Traverse a collection of elements Move from the front to the end “Bubble” the largest value to the end using pair-wise comparisons and swapping Swap 5 101 42 35 12 77 101 5

10 "Bubbling Up" the Largest Element
Traverse a collection of elements Move from the front to the end “Bubble” the largest value to the end using pair-wise comparisons and swapping 101 42 35 12 77 5 Largest value correctly placed

11 The “Bubble Up” Algorithm
index <- 1 last_compare_at <- n – 1 loop exitif(index > last_compare_at) if(A[index] > A[index + 1]) then Swap(A[index], A[index + 1]) endif index <- index + 1 endloop

12 No, Swap isn’t built in. LB Procedure Swap(a, b isoftype in/out Num)
t isoftype Num t <- a a <- b b <- t endprocedure // Swap

13 Items of Interest Notice that only the largest value is correctly placed All other values are still out of order So we need to repeat this process 101 42 35 12 77 5 Largest value correctly placed

14 Repeat “Bubble Up” How Many Times?
If we have N elements… And if each time we bubble an element, we place it in its correct location… Then we repeat the “bubble up” process N – 1 times. This guarantees we’ll correctly place all N elements.

15 “Bubbling” All the Elements
77 12 35 42 5 101 N - 1 5 42 12 35 77 101 42 5 35 12 77 101 42 35 5 12 77 101 42 35 12 5 77 101

16 Reducing the Number of Comparisons
12 35 42 77 101 5 77 12 35 42 5 101 5 42 12 35 77 101 42 5 35 12 77 101 42 35 5 12 77 101

17 Reducing the Number of Comparisons
On the Nth “bubble up”, we only need to do MAX-N comparisons. For example: This is the 4th “bubble up” MAX is 6 Thus we have 2 comparisons to do 42 5 35 12 77 101

18 Putting It All Together

19 N is … // Size of Array Arr_Type definesa Array[1..N] of Num Procedure Swap(n1, n2 isoftype in/out Num) temp isoftype Num temp <- n1 n1 <- n2 n2 <- temp endprocedure // Swap

20 Outer loop Inner loop procedure Bubblesort(A isoftype in/out Arr_Type)
to_do, index isoftype Num to_do <- N – 1 loop exitif(to_do = 0) index <- 1 exitif(index > to_do) if(A[index] > A[index + 1]) then Swap(A[index], A[index + 1]) endif index <- index + 1 endloop to_do <- to_do - 1 endprocedure // Bubblesort Inner loop Outer loop

21 Already Sorted Collections?
What if the collection was already sorted? What if only a few elements were out of place and after a couple of “bubble ups,” the collection was sorted? We want to be able to detect this and “stop early”! 42 35 12 5 77 101

22 Using a Boolean “Flag” We can use a boolean variable to determine if any swapping occurred during the “bubble up.” If no swapping occurred, then we know that the collection is already sorted! This boolean “flag” needs to be reset after each “bubble up.”

23 did_swap isoftype Boolean
did_swap <- true loop exitif ((to_do = 0) OR NOT(did_swap)) index <- 1 did_swap <- false exitif(index > to_do) if(A[index] > A[index + 1]) then Swap(A[index], A[index + 1]) endif index <- index + 1 endloop to_do <- to_do - 1

24 An Animated Example N 8 did_swap true to_do 7 index 98 23 45 14 6 67
33 42

25 An Animated Example N 8 did_swap false to_do 7 index 1 98 23 45 14 6
67 33 42

26 An Animated Example N 8 did_swap false to_do 7 index 1 Swap 98 23 45
14 6 67 33 42

27 An Animated Example N 8 did_swap true to_do 7 index 1 Swap 23 98 45 14
6 67 33 42

28 An Animated Example N 8 did_swap true to_do 7 index 2 23 98 45 14 6 67
33 42

29 An Animated Example N 8 did_swap true to_do 7 index 2 Swap 23 98 45 14
6 67 33 42

30 An Animated Example N 8 did_swap true to_do 7 index 2 Swap 23 45 98 14
6 67 33 42

31 An Animated Example N 8 did_swap true to_do 7 index 3 23 45 98 14 6 67
33 42

32 An Animated Example N 8 did_swap true to_do 7 index 3 Swap 23 45 98 14
6 67 33 42

33 An Animated Example N 8 did_swap true to_do 7 index 3 Swap 23 45 14 98
6 67 33 42

34 An Animated Example N 8 did_swap true to_do 7 index 4 23 45 14 98 6 67
33 42

35 An Animated Example N 8 did_swap true to_do 7 index 4 Swap 23 45 14 98
6 67 33 42

36 An Animated Example N 8 did_swap true to_do 7 index 4 Swap 23 45 14 6
98 67 33 42

37 An Animated Example N 8 did_swap true to_do 7 index 5 23 45 14 6 98 67
33 42

38 An Animated Example N 8 did_swap true to_do 7 index 5 Swap 23 45 14 6
98 67 33 42

39 An Animated Example N 8 did_swap true to_do 7 index 5 Swap 23 45 14 6
67 98 33 42

40 An Animated Example N 8 did_swap true to_do 7 index 6 23 45 14 6 67 98
33 42

41 An Animated Example N 8 did_swap true to_do 7 index 6 Swap 23 45 14 6
67 98 33 42

42 An Animated Example N 8 did_swap true to_do 7 index 6 Swap 23 45 14 6
67 33 98 42

43 An Animated Example N 8 did_swap true to_do 7 index 7 23 45 14 6 67 33
98 42

44 An Animated Example N 8 did_swap true to_do 7 index 7 Swap 23 45 14 6
67 33 98 42

45 An Animated Example N 8 did_swap true to_do 7 index 7 Swap 23 45 14 6
67 33 42 98

46 After First Pass of Outer Loop
N 8 did_swap true to_do 7 Finished first “Bubble Up” index 8 23 45 14 6 67 33 42 98

47 The Second “Bubble Up” N 8 did_swap false to_do 6 index 1 23 45 14 6
67 33 42 98

48 The Second “Bubble Up” N 8 did_swap false to_do 6 index 1 No Swap 23
45 14 6 67 33 42 98

49 The Second “Bubble Up” N 8 did_swap false to_do 6 index 2 23 45 14 6
67 33 42 98

50 The Second “Bubble Up” N 8 did_swap false to_do 6 index 2 Swap 23 45
14 6 67 33 42 98

51 The Second “Bubble Up” N 8 did_swap true to_do 6 index 2 Swap 23 14 45
67 33 42 98

52 The Second “Bubble Up” N 8 did_swap true to_do 6 index 3 23 14 45 6 67
33 42 98

53 The Second “Bubble Up” N 8 did_swap true to_do 6 index 3 Swap 23 14 45
67 33 42 98

54 The Second “Bubble Up” N 8 did_swap true to_do 6 index 3 Swap 23 14 6
45 67 33 42 98

55 The Second “Bubble Up” N 8 did_swap true to_do 6 index 4 23 14 6 45 67
33 42 98

56 The Second “Bubble Up” N 8 did_swap true to_do 6 index 4 No Swap 23 14
45 67 33 42 98

57 The Second “Bubble Up” N 8 did_swap true to_do 6 index 5 23 14 6 45 67
33 42 98

58 The Second “Bubble Up” N 8 did_swap true to_do 6 index 5 Swap 23 14 6
45 67 33 42 98

59 The Second “Bubble Up” N 8 did_swap true to_do 6 index 5 Swap 23 14 6
45 33 67 42 98

60 The Second “Bubble Up” N 8 did_swap true to_do 6 index 6 23 14 6 45 33
67 42 98

61 The Second “Bubble Up” N 8 did_swap true to_do 6 index 6 Swap 23 14 6
45 33 67 42 98

62 The Second “Bubble Up” N 8 did_swap true to_do 6 index 6 Swap 23 14 6
45 33 42 67 98

63 After Second Pass of Outer Loop
8 did_swap true to_do 6 Finished second “Bubble Up” index 7 23 14 6 45 33 42 67 98

64 The Third “Bubble Up” N 8 did_swap false to_do 5 index 1 23 14 6 45 33
42 67 98

65 The Third “Bubble Up” N 8 did_swap false to_do 5 index 1 Swap 23 14 6
45 33 42 67 98

66 The Third “Bubble Up” N 8 did_swap true to_do 5 index 1 Swap 14 23 6
45 33 42 67 98

67 The Third “Bubble Up” N 8 did_swap true to_do 5 index 2 14 23 6 45 33
42 67 98

68 The Third “Bubble Up” N 8 did_swap true to_do 5 index 2 Swap 14 23 6
45 33 42 67 98

69 The Third “Bubble Up” N 8 did_swap true to_do 5 index 2 Swap 14 6 23
45 33 42 67 98

70 The Third “Bubble Up” N 8 did_swap true to_do 5 index 3 14 6 23 45 33
42 67 98

71 The Third “Bubble Up” N 8 did_swap true to_do 5 index 3 No Swap 14 6
23 45 33 42 67 98

72 The Third “Bubble Up” N 8 did_swap true to_do 5 index 4 14 6 23 45 33
42 67 98

73 The Third “Bubble Up” N 8 did_swap true to_do 5 index 4 Swap 14 6 23
45 33 42 67 98

74 The Third “Bubble Up” N 8 did_swap true to_do 5 index 4 Swap 14 6 23
33 45 42 67 98

75 The Third “Bubble Up” N 8 did_swap true to_do 5 index 5 14 6 23 33 45
42 67 98

76 The Third “Bubble Up” N 8 did_swap true to_do 5 index 5 Swap 14 6 23
33 45 42 67 98

77 The Third “Bubble Up” N 8 did_swap true to_do 5 index 5 Swap 14 6 23
33 42 45 67 98

78 After Third Pass of Outer Loop
N 8 did_swap true to_do 5 Finished third “Bubble Up” index 6 14 6 23 33 42 45 67 98

79 The Fourth “Bubble Up” N 8 did_swap false to_do 4 index 1 14 6 23 33
42 45 67 98

80 The Fourth “Bubble Up” N 8 did_swap false to_do 4 index 1 Swap 14 6 23
33 42 45 67 98

81 The Fourth “Bubble Up” N 8 did_swap true to_do 4 index 1 Swap 6 14 23
33 42 45 67 98

82 The Fourth “Bubble Up” N 8 did_swap true to_do 4 index 2 6 14 23 33 42
45 67 98

83 The Fourth “Bubble Up” N 8 did_swap true to_do 4 index 2 No Swap 6 14
23 33 42 45 67 98

84 The Fourth “Bubble Up” N 8 did_swap true to_do 4 index 3 6 14 23 33 42
45 67 98

85 The Fourth “Bubble Up” N 8 did_swap true to_do 4 index 3 No Swap 6 14
23 33 42 45 67 98

86 The Fourth “Bubble Up” N 8 did_swap true to_do 4 index 4 6 14 23 33 42
45 67 98

87 The Fourth “Bubble Up” N 8 did_swap true to_do 4 index 4 No Swap 6 14
23 33 42 45 67 98

88 After Fourth Pass of Outer Loop
N 8 did_swap true to_do 4 Finished fourth “Bubble Up” index 5 6 14 23 33 42 45 67 98

89 The Fifth “Bubble Up” N 8 did_swap false to_do 3 index 1 6 14 23 33 42
45 67 98

90 The Fifth “Bubble Up” N 8 did_swap false to_do 3 index 1 No Swap 6 14
23 33 42 45 67 98

91 The Fifth “Bubble Up” N 8 did_swap false to_do 3 index 2 6 14 23 33 42
45 67 98

92 The Fifth “Bubble Up” N 8 did_swap false to_do 3 index 2 No Swap 6 14
23 33 42 45 67 98

93 The Fifth “Bubble Up” N 8 did_swap false to_do 3 index 3 6 14 23 33 42
45 67 98

94 The Fifth “Bubble Up” N 8 did_swap false to_do 3 index 3 No Swap 6 14
23 33 42 45 67 98

95 After Fifth Pass of Outer Loop
N 8 did_swap false to_do 3 Finished fifth “Bubble Up” index 4 6 14 23 33 42 45 67 98

96 Finished “Early” N 8 did_swap false to_do 3
We didn’t do any swapping, so all of the other elements must be correctly placed. We can “skip” the last two passes of the outer loop. index 4 6 14 23 33 42 45 67 98

97 Summary “Bubble Up” algorithm will move largest value to its correct location (to the right) Repeat “Bubble Up” until all elements are correctly placed: Maximum of N-1 times Can finish early if no swapping occurs We reduce the number of elements we compare each time one is correctly placed

98 Truth in CS Act NOBODY EVER USES BUBBLE SORT NOBODY NOT EVER
LB Truth in CS Act NOBODY EVER USES BUBBLE SORT NOBODY NOT EVER BECAUSE IT IS EXTREMELY INEFFICIENT

99 Questions?

100 Mergesort

101 Sorting Sorting takes an unordered collection and makes it an ordered one. 77 42 35 12 101 5 5 12 35 42 77 101

102 Divide and Conquer Divide and Conquer cuts the problem in half each time, but uses the result of both halves: cut the problem in half until the problem is trivial solve for both halves combine the solutions

103 Mergesort A divide-and-conquer algorithm:
Divide the unsorted array into 2 halves until the sub-arrays only contain one element Merge the sub-problem solutions together: Compare the sub-array’s first elements Remove the smallest element and put it into the result array Continue the process until all elements have been put into the result array 37 23 6 89 15 12 2 19

104 How to Remember Merge Sort?
That’s easy. Just remember Mariah Carey. As a singing star, Ms. Carey has perfected the “wax-on” wave motion--a clockwise sweep of her hand used to emphasize lyrics. The Maria “Wax-on” Angle: ¦(q,t) The Siren of Subquadratic Sorts

105 How To Remember Merge Sort?
¦(q,t) Just as Mariah recursively moves her hands into smaller circles, so too does merge sort recursively split an array into smaller segments. We need two such recursions, one for each half of the split array.

106 Algorithm Mergesort(Passed an array) if array size > 1
Divide array in half Call Mergesort on first half. Call Mergesort on second half. Merge two halves. Merge(Passed two arrays) Compare leading element in each array Select lower and place in new array. (If one input array is empty then place remainder of other array in output array)

107 More TRUTH in CS LB We don’t really pass in two arrays!
We pass in one array with indicator variables which tell us where one set of data starts and finishes and where the other set of data starts and finishes. Honest. s1 f1 s2 f2

108 Algorithm LB Mergesort(Passed an array) if array size > 1
Divide array in half Call Mergesort on first half. Call Mergesort on second half. Merge two halves. Merge(Passed two arrays) Compare leading element in each array Select lower and place in new array. (If one input array is empty then place remainder of other array in output array)

109 98 23 45 14 6 67 33 42

110 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42

111 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14

112 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 98 23

113 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 98 23 Merge

114 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 98 23 23 Merge

115 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 98 23 23 98 Merge

116 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 98 23 45 14 23 98

117 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 98 23 45 14 23 98 Merge

118 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 98 23 45 14 23 98 14 Merge

119 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 98 23 45 14 23 98 14 45 Merge

120 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 98 23 45 14 23 98 14 45 Merge

121 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 98 23 45 14 23 98 14 45 14 Merge

122 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 98 23 45 14 23 98 14 45 14 23 Merge

123 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 98 23 45 14 23 98 14 45 14 23 45 Merge

124 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 98 23 45 14 23 98 14 45 14 23 45 98 Merge

125 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 23 98 14 45 14 23 45 98

126 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 23 98 14 45 14 23 45 98

127 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 23 98 14 45 14 23 45 98 Merge

128 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 23 98 14 45 6 14 23 45 98 Merge

129 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 23 98 14 45 6 67 14 23 45 98 Merge

130 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 23 98 14 45 6 67 14 23 45 98

131 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 23 98 14 45 6 67 14 23 45 98 Merge

132 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 23 98 14 45 6 67 33 14 23 45 98 Merge

133 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 23 98 14 45 6 67 33 42 14 23 45 98 Merge

134 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 23 98 14 45 6 67 33 42 14 23 45 98 Merge

135 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 23 98 14 45 6 67 33 42 14 23 45 98 6 Merge

136 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 23 98 14 45 6 67 33 42 14 23 45 98 6 33 Merge

137 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 23 98 14 45 6 67 33 42 14 23 45 98 6 33 42 Merge

138 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 23 98 14 45 6 67 33 42 14 23 45 98 6 33 42 67 Merge

139 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 23 98 14 45 6 67 33 42 14 23 45 98 6 33 42 67 Merge

140 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 23 98 14 45 6 67 33 42 14 23 45 98 6 33 42 67 6 Merge

141 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 23 98 14 45 6 67 33 42 14 23 45 98 6 33 42 67 6 14 Merge

142 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 23 98 14 45 6 67 33 42 14 23 45 98 6 33 42 67 6 14 23 Merge

143 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 23 98 14 45 6 67 33 42 14 23 45 98 6 33 42 67 6 14 23 33 Merge

144 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 23 98 14 45 6 67 33 42 14 23 45 98 6 33 42 67 6 14 23 33 42 Merge

145 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 23 98 14 45 6 67 33 42 14 23 45 98 6 33 42 67 6 14 23 33 42 45 Merge

146 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 23 98 14 45 6 67 33 42 14 23 45 98 6 33 42 67 6 14 23 33 42 45 67 Merge

147 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 23 98 14 45 6 67 33 42 14 23 45 98 6 33 42 67 6 14 23 33 42 45 67 98 Merge

148 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 23 98 14 45 6 67 33 42 14 23 45 98 6 33 42 67 6 14 23 33 42 45 67 98

149 98 23 45 14 6 67 33 42 6 14 23 33 42 45 67 98

150 Summary Divide the unsorted collection into two
Until the sub-arrays only contain one element Then merge the sub-problem solutions together


Download ppt "Lecture 16 Bubble Sort Merge Sort."

Similar presentations


Ads by Google