Download presentation
Presentation is loading. Please wait.
1
Day 3: September 4, 2013 Gates from Transistors
ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 3: September 4, 2013 Gates from Transistors Penn ESE370 Fall DeHon
2
Previously Simplified models for reasoning about transistor circuits
Zeroth-order Penn ESE370 Fall DeHon
3
Today How to construct static CMOS gates Penn ESE370 Fall DeHon
4
Outline Circuit understanding (preclass) Static CMOS
Gate function identification Static CMOS Structure Inverter Construct gate Inverting Cascading Penn ESE370 Fall DeHon
5
What function? Buffer Vin=Vdd Vout=Vdd Vin=0 Vout=0
Penn ESE370 Fall DeHon
6
Why Zeroth Order Useful?
Allows us to reason (mostly) at logic level about steady-state functionality of typical gate circuits Make sure understand logical function (achieve logical function) before worrying about performance details Penn ESE370 Fall DeHon
7
What gate? Penn ESE370 Fall DeHon
8
What function? Penn ESE370 Fall DeHon
9
DeMorgan’s Law /f = a + b What is f? Penn ESE370 Fall DeHon
10
What function? Penn ESE370 Fall DeHon
11
Static CMOS Gate Penn ESE370 Fall DeHon
12
Static CMOS Gate Structure
Penn ESE370 Fall DeHon
13
Static CMOS Gate Structure
Penn ESE370 Fall DeHon
14
Static CMOS Gate Structure
Drives rail-to-rail (output is Vdd or Gnd) Inputs connects to gates load is capacitive Once charge capacitive output, doesn’t use energy (first order) Output actively driven Penn ESE370 Fall DeHon
15
Inverter Out = /in Penn ESE370 Fall DeHon
16
Inverter Penn ESE370 Fall DeHon
17
Why zeroth-order adequate?
Static analysis – can ignore capacitors Capacitive loads – resistances don’t matter Feed forward for gates – don’t generally have loops can work forward from known values Logic drive rail-to-rail Don’t have to reason about intermediate voltage levels Penn ESE370 Fall DeHon
18
What zeroth-order not tell us?
Delay Dynamics Behavior if not Capacitively loaded Acyclic (if there are Loops) Rail-to-rail drive Penn ESE370 Fall DeHon
19
Gate Design Example Penn ESE370 Fall DeHon
20
Gate Design Design gate to perform: f=(/a+/b)*/c
Penn ESE370 Fall DeHon
21
f=(/a+/b)*/c Strategy: Use static CMOS structure
Design PMOS pullup for f Use DeMorgan’s Law to determine /f Design NMOS pulldown for /f Penn ESE370 Fall DeHon
22
f=(/a+/b)*/c PMOS Pullup for f? Penn ESE370 Fall DeHon
23
f=(/a+/b)*/c Use DeMorgan’s Law to determine /f. What is /f ?
Penn ESE370 Fall DeHon
24
f=(/a+/b)*/c NMOS Pulldown for /f? Penn ESE370 Fall DeHon
25
f=(/a+/b)*/c a c b Penn ESE370 Fall DeHon
26
Static CMOS Source/Drains
With PMOS on top, NMOS on bottom PMOS source always at top (near Vdd) NMOS source always at bottom (near Gnd) Penn ESE370 Fall DeHon
27
Inverting Gate Penn ESE370 Fall DeHon
28
Inverting Stage Each stage of Static CMOS gate is inverting
Penn ESE370 Fall DeHon
29
How do we buffer? Penn ESE370 Fall DeHon
30
How implement OR? Penn ESE370 Fall DeHon
31
Cascading Stages Penn ESE370 Fall DeHon
32
Stages Can always cascade “stages” to build more complex gates
Could simply build nor2 at circuit level and assemble arbitrary logic by combining – universality but may not be smallest/fastest/least power Penn ESE370 Fall DeHon
33
Implement: f=a*/b Pullup? Pulldown? Penn ESE370 Fall DeHon
34
f=a*/b Penn ESE370 Fall DeHon
35
Big Idea Systematic construction of any gate from transistors
Use static CMOS structure Design PMOS pullup for f Use DeMorgan’s Law to determine /f Design NMOS pulldown for /f Penn ESE370 Fall DeHon
36
Admin Office hours Thursday: HW1 due Friday in Detkin (RCA) Lab
Today only: Spencer 7:30—8:30pm Ketterer Monday: Spencer 5-6pm Ketterer Tuesday: Andre 4:15-5:30pm Levine 270 Thursday: HW1 due identify gates; use electric Friday in Detkin (RCA) Lab Please read through HW2, Lab1 details Bring USB drive with you to lab on Friday to store waveforms Penn ESE370 Fall DeHon
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.