Presentation is loading. Please wait.

Presentation is loading. Please wait.

Privacy-preserving Prediction

Similar presentations


Presentation on theme: "Privacy-preserving Prediction"β€” Presentation transcript:

1 Privacy-preserving Prediction
Vitaly Feldman Brain with Cynthia Dwork

2 Privacy-preserving learning
Input: dataset 𝑆=( π‘₯ 1 , 𝑦 1 ),…,( π‘₯ 𝑛 , 𝑦 𝑛 ) Goal: given π‘₯ predict 𝑦 𝑠 Differentially private learning algorithm 𝐴 Model β„Ž 𝐴(𝑆) 𝐴(𝑆′)

3 Trade-offs Linear regression in ℝ 𝒅
With πœ–-DP needs factor Ξ© 𝑑 πœ– more data [Bassily,Smith,Thakurta 14] Learning a linear classifier over {0,1} 𝑑 Needs factor Ξ© 𝑑 πœ– more data [Feldman,Xiao 13] MNIST accuracy β‰ˆπŸ—πŸ“% with small πœ–, 𝛿 vs 99.8% without privacy [AbadiCGMMTZ 16]

4 Prediction 𝑠 Users need predictions not models
Fits many existing systems 𝑝 1 βˆˆπ‘‹ Prediction API 𝑠 𝑣 2 𝑝 2 𝑣 2 𝑝 𝑑 𝑣 𝑑 Users Given that many existing applications DP

5 Attacks Black-box membership inference with high accuracy
[Shokri,Stronati,Song,Shmatikov 17; LongBWBWTGC 18; SalemZFHB 18]

6 Learning with DP prediction
Accuracy-privacy trade-off Single prediction query Differentially private prediction : 𝑀: π‘‹Γ—π‘Œ 𝑛 Γ—π‘‹β†’π‘Œ is πœ–-DP prediction algorithm if for every π‘₯βˆˆπ‘‹, 𝑀(𝑆,π‘₯) is πœ–-DP private w.r.t. 𝑆

7 Differentially private aggregation
Label aggregation [HCB 16; PAEGT 17; PSMRTE 18; BTT 18] 𝑆 𝑆 1 𝑆 2 𝑆 3 β‹― 𝑆 π‘˜ 𝑛=π‘˜π‘š β‹― 𝐴 β„Ž 1 β„Ž 2 β„Ž 3 β„Ž π‘˜βˆ’2 β„Ž π‘˜βˆ’1 β„Ž π‘˜ β‹― (non-DP) learning algo 𝐴 π‘₯ β„Ž 1 (π‘₯) β„Ž 2 (π‘₯) β„Ž 3 (π‘₯) β„Ž π‘˜βˆ’2 (π‘₯) β„Ž π‘˜βˆ’1 (π‘₯) β„Ž π‘˜ (π‘₯) Differentially private aggregation 𝑦 e.g. exponential mechanism π‘¦βˆ 𝑒 πœ– | 𝑖 β„Ž 𝑖 π‘₯ =𝑦}|/2

8 Classification via aggregation
PAC model: Let 𝐢 be a class of function over 𝑋 For all distributions 𝑃 over 𝑋×{0,1} output β„Ž such that w.h.p. 𝐏𝐫 (π‘₯,𝑦)βˆΌπ‘ƒ β„Ž π‘₯ ≠𝑦 ≀Op t 𝑃 𝐢 +𝛼 Non-private 𝝐-DP prediction 𝝐-DP model Θ VCdim 𝐢 𝑛 Θ VCdim 𝐢 πœ–π‘› Θ Rdim 𝐢 πœ–π‘› 𝛼 Realizable case: Θ VCdim 𝐢 𝑛 𝑂 VCdim 𝐢 πœ–π‘› 1/3 + Θ Rdim 𝐢 πœ–π‘› Agnostic: Representation dimension [Beimel,Nissim,Stemmer 13] VCdim 𝐢 ≀ Rdim 𝐢 ≀ VCdim 𝐢 β‹…log⁑|𝑋| [KLNRS 08] For many classes Rdim 𝐢 =Ξ©( VCdim 𝐢 β‹… log 𝑋 ) [F.,Xiao 13]

9 Prediction stability Γ€ la [Bousquet,Elisseeff 02]:
𝐴: π‘‹Γ—π‘Œ 𝑛 ×𝑋→ℝ is uniformly 𝛾-stable algorithm if for every, neighboring 𝑆,𝑆′ and π‘₯βˆˆπ‘‹, 𝐴 𝑆,π‘₯ βˆ’π΄ 𝑆 β€² ,π‘₯ ≀𝛾 Convex regression: given 𝐹= 𝑓 𝑀,π‘₯ π‘€βˆˆπΎ For 𝑃 over π‘‹Γ—π‘Œ, minimize: β„“ 𝑃 𝑀 = 𝐄 (π‘₯,𝑦)βˆΌπ‘ƒ [β„“(𝑓 𝑀,π‘₯ ,𝑦)] over convex πΎβŠ† ℝ 𝑑 , where β„“(𝑓 𝑀,π‘₯ ,𝑦) is convex in 𝑀 for all π‘₯,𝑦 Convex 1-Lipschitz regression over β„“ 2 ball of radius 1: Non-private 𝝐-DP prediction 𝝐-DP model Θ 1 𝑛 𝑂 1 πœ–π‘› Ξ© 1 𝑛 + 𝑑 πœ–π‘› Excess loss:

10 DP prediction implies generalization
Beyond aggregation Threshold functions on a line 1 π‘š Excess error for agnostic learning Non-private 𝝐-DP prediction 𝝐-DP model Θ 1 𝑛 Θ 𝑛 + 1 πœ–π‘› Θ 1 𝑛 + log π‘š πœ–π‘› DP prediction implies generalization

11 Conclusions Natural setting for learning with privacy
Better accuracy-privacy trade-off Paper (COLT 2018): Open problems: General agnostic learning Other general approaches Handling of multiple queries [BTT 18]


Download ppt "Privacy-preserving Prediction"

Similar presentations


Ads by Google