Presentation is loading. Please wait.

Presentation is loading. Please wait.

Search for New Physics with the LHCb Detector

Similar presentations


Presentation on theme: "Search for New Physics with the LHCb Detector"— Presentation transcript:

1 Search for New Physics with the LHCb Detector
Niels Tuning NIKHEF/ Free University Amsterdam On behalf of the LHCb collaboration MIAMI2005, December 15th 2005 15 Dec 2005 Search for New Physics with the LHCb detector - MIAMI Niels Tuning

2 Outline Let’s consider a GUT scenario and show the possibilities for the LHCb experiment… GUT + Neutrino mixing Predictions for bs Signatures in LHCb LHCb signatures: The Box Diagram Bs mixing: BsDs-π+ CP phase: BsJ/ψφ The Penguin Diagram/Rare Decay Rare decays: B(s)(K*)μμ 15 Dec 2005 Search for New Physics with the LHCb detector - MIAMI Niels Tuning

3 Grand Unified Theories
Can the large neutrino mixing angles be transferred to the hadronic sector? GUT unifies quarks and leptons Add reference 15 Fermions Simplest GUT: SU(5) Down type quarks with leptons in mulitplet: 15 Dec 2005 Search for New Physics with the LHCb detector - MIAMI Niels Tuning

4 To SUSY or not to SUSY Non-SUSY SUSY SUSY GUT vs non-SUSY GUT:
Amaldi, de Boer, Furstenau Phys.Lett.B260(447),1991 Non-SUSY SUSY SUSY GUT vs non-SUSY GUT: Unification: 3σ vs 12σ Scale: vs 1015 GeV τ p decay ~ MGUT4 R-parity in SUSY can prevent unwanted baryon number violation sin2θW from SUSY in better agreement with data Phys.Lett.B592(1),2004 15 Dec 2005 Search for New Physics with the LHCb detector - MIAMI Niels Tuning

5 The model: SUSY SO(10) Why SO(10) ?? Small extension of SU(5)
SO(10)  SU(5) x U(1) 16 = 10 +5 + 1 It nicely incorporates the right-handed ν The see-saw mechanism “explains” small non-zero neutrino mass, and even relates MνRMGUT It relates neutrino mixing to squark mixing! Chang, Masiero, Murayama Phys.Rev.D67 (075013), 2003, hep-ph/ Barbieri, Hall Phys.Lett.B338(212),1994, hep-ph/ Jager, Nierste Eur.Phys.J.C33(256),2004 hep-ph/ Harnik,Larson,Murayama,Pierce Phys.Rev.D69(094024),2004 hep-ph/ 15 Dec 2005 Search for New Physics with the LHCb detector - MIAMI Niels Tuning

6 The model: SUSY SO(10) ~ Superpotential: (16 are fermions, 10 Higgses)
Chang, Masiero, Murayama Phys.Rev.D67 (075013), 2003, hep-ph/ YU contains the large top coupling YU can be symmetric. In Yu diagonal basis we have: Just as in the SM, we rotate the d-quarks Break to SU(5) Break to MSSM (+rh ν): Neutrino mixing angle bR ~ Without neutrino mass, UMNS could be rotated away 15 Dec 2005 Search for New Physics with the LHCb detector - MIAMI Niels Tuning

7 Neutrino mixing: Super Kamiokande
Oscillation: νμ↔ντ CC reaction: νμ→μ μ-detection Cosmic ray on atmosphere: π-→ e-νeνμνμ Courtesy Univ.of Hawaii νμ↔ντ L/E (km/GeV) Phys.Rev.D71:112005,2005, hep-ex/ Phys.Rev.Lett.81 (1562),1998, hep-ex/ Δm2= eV2, sin2θ23=1 15 Dec 2005 Search for New Physics with the LHCb detector - MIAMI Niels Tuning

8 Neutrino mixing  squark smixing
Consequences: No effect in sR↔bR (i.e. CKM), because there is no right handed coupling Observable effects in mixing between s̃↔b̃ The Box Diagram: Bs mixing: BsDs-π+ CP phase: BsJ/ψφ LHCb The Penguin Diagram/Rare decay: Rare decays: B(s)(K*)μ+μ- 15 Dec 2005 Search for New Physics with the LHCb detector - MIAMI Niels Tuning

9 Size of the Box: Bs mixing (Δms)
New particles can affect the Box: Phys.Lett.B192:245,1987 msSM  |Vts2| Bs–Bs oscillations: “Box” diagram ms  |Vts+VNP|2 ? Remember B0d oscillations: Predicted heavy particle…  mtop>50 GeV Needed to break GIM cancellations 15 Dec 2005 Search for New Physics with the LHCb detector - MIAMI Niels Tuning

10 Phase of the Box: BsJ/ψφ
Δms is senstive to |A(B0B0)| We can also probe the phase of A(B0B0)| Interference of two diagrams Ball et al,Phys.Rev.D69(115011),2004 hep-ph/ B0sJ/ψφ: Golden decay Theoretically clean sinφs = -Aηλ4/Aλ2 = -2ηλ2  -0.03 Any larger asymmetry means new physics… New physics appears in the box, as before: B0sJ/ψφ |e | i(φs + φNP ) ? 15 Dec 2005 Search for New Physics with the LHCb detector - MIAMI Niels Tuning

11 Rare decays: B(s)(K*)μ+μ-
s̃↔b̃ also appears in Penguin Diagram Affects rare decay B0K*μ+μ- μ+ μ- Tevatron: BR < SM: BR= Similarly, Bsμ+μ- is very promising SO(10) unifies fermion masses, and predicts:  tan β = mt(MZ)/mb(MZ)~ 40-50 s μ- μ+ The “smoking gun” of SO(10) Yukawa unification... Blazek,Dermisek,Raby Phys.Rev.D65(115004),2002 hep-ph/ Dedes,Dreiner,Nierste Phys.Rev.Lett.87(251804),2001 hep-ph/ 15 Dec 2005 Search for New Physics with the LHCb detector - MIAMI Niels Tuning

12 Neutrino mixing  squark smixing
Consequences: No effect in sR↔bR (i.e. CKM), because there is no right handed coupling Observable effects in mixing between s̃↔b̃ The Box Diagram: Bs mixing: BsDs-π+ CP phase: BsJ/ψφ LHCb The Penguin Diagram/Rare decay: Rare decays: B(s)(K*)μ+μ- 15 Dec 2005 Search for New Physics with the LHCb detector - MIAMI Niels Tuning

13 What is LHCb? Aim: measure CP violation and rare decays Bs mixing
pp with s =14 TeV L = cm-2s-1 1012 b-hadrons per year Start in July 2007 10 meter 20 meter Aim: measure CP violation and rare decays Bs mixing CKM angles α, β, γ Small branching fractions 15 Dec 2005 Search for New Physics with the LHCb detector - MIAMI Niels Tuning

14 Cryogenic services line
Status LHC accelerator: LHCb experiment : Magnet Muon Filter RICH LHC tunnel LHC dipole Cryogenic services line 1 December 2005 15 Dec 2005 Search for New Physics with the LHCb detector - MIAMI Niels Tuning

15 LHCb spectrometer 10-300 mrad horizontal 10-250 mrad vertical B
VELO: Vertex Locator TT, T1, T2, T3: Tracking stations RICH1-2: Ring Imaging Cherenkov detectors ECAL, HCAL: Calorimeters M1–M5: Muon stations LHCb spectrometer Dipole magnet VELO proton beam proton beam collision point mrad horizontal mrad vertical ~1 cm B 15 Dec 2005 Search for New Physics with the LHCb detector - MIAMI Niels Tuning

16 Why LHCb? pT of B-hadron η of B-hadron High cross section LHC energy
Large acceptance b’s produced forward Trigger ↓ Low pT Leptons+hadrons Particle identification with RICH pT of B-hadron η of B-hadron Tevatron LHCb ATLAS/CMS √s (TeV) 2 14 σ(pp bb)(μb) 100 500 L (cm-2s-1) 2008 4.1031 2.1032 1033 15 Dec 2005 Search for New Physics with the LHCb detector - MIAMI Niels Tuning

17 Bs mixing, Δms in LHCb bt ,K Bs K K Ds  Measure B0sB0s
Need to know how B0s was produced: flavour tagging Need to know how B0s decayed: use BsDs-π+ bt Bs K K ,K  Ds Primary vertex Bs→Ds-π+ (tagged as Bs) 15 Dec 2005 Search for New Physics with the LHCb detector - MIAMI Niels Tuning

18 Bs mixing, Δms in LHCb BsDs-+ proper time resolution τ ~ 40 fs Measurement of ms is one of the first physics goals Expect 80k Bs  Ds-π+ events per year (2 fb–1) Excellent proper time resolution is vital: Average τ ~ 40 fs 5σ observation for Δms=20 ps-1: Tevatron fb–1 all years? ATLAS/CMS fb– years LHCb 1/4 fb– months Standard Model: ps-1 UT fit Present experimental limit: >14.5 ps-1 Tevatron 5σ observation in 1 year: <68 ps LHCb  5 observation of Bs oscillations for ms < 68 ps–1 with 2 fb–1 Prediction for Δms from UT fit: 15 Dec 2005 Search for New Physics with the LHCb detector - MIAMI Niels Tuning

19 Phase: BsJ/ψφ in LHCb - + A = CP odd & A0,|| = CP even B0sJ/ψφ:
Dunietz et al, Phys.Rev.D63(114015),2001 hep-ph/ A = CP odd & A0,|| = CP even B0sJ/ψφ: Theoretically clean and experimentally easy: J/ψ→µµ : trigger J/ψ(µµ)φ(KK): 4 charged tracks Annual yield: 120k events, S/B~3 But need angular analysis Final state contains a mixture of CP-odd and CP-even Fit for sin fs, DGs and CP-odd fraction (needs external ms) + - ~1-cos2θ ~1+cos2θ  cos(θ) BsJ/ψφ (Bs tagged) 15 Dec 2005 Search for New Physics with the LHCb detector - MIAMI Niels Tuning  Proper time τ (ps)

20 Rare Decays: B(s)(K*)μ+μ- in LHCb
Thesis P.Koppenburg Hurth, Rev.Mod.Phys.75(1159), 2003. hep-ph/ B0K*μ+μ- Annual yield: 4400 events, S/B~3 BR(BK*μ+μ- )~ Sign for new physics: FB-asymmetry Theory LHCb Bsμ+μ- Maybe LHCb first hot result! BR(Bsμ+μ- )~ : 30 evts/year Background estimate difficult: Generate 107 (b→μ, b→μ)-events 0 events pass selection But in 1 year we have 1010 (b→μ, b→μ)… (mμμ)2 (mμμ/mB)2 LHCb Bsμ+μ- mass resolution: Exclude BR> with 8 fb-1 CDF+D0 R.Bernhard et al hep-ex/ 15 Dec 2005 Search for New Physics with the LHCb detector - MIAMI Niels Tuning

21 So, what do we have: Bs  Ds-π+ Bs→J/ψφ: B0→K*μ+μ- Bs→μ+μ- μ+ μ- s μ+
Additional contribution in box diagram 80k events per year proper time resolution is excellent τ ~ 40 fs Bs→J/ψφ: Additional phase in box diagram 120k events per year Theoretically clean and experimentally easy B0→K*μ+μ- Annual yield: 4400 events, S/B~3 Sign for new physics: FB-asymmetry Bs→μ+μ- Annual yield: 30 evts/year Very sensitive to new physics μ+ μ- s μ+ μ- CP: CKM angles angle γ (Bs→DsK, B→D0K*, B(s)→ππ/KK) angle α (B→πππ) angle β (B→J/ψKs B→φKs,…) BR(B→K*γ), Bc, …, … Many other things… 15 Dec 2005 Search for New Physics with the LHCb detector - MIAMI Niels Tuning

22 Summary + = νµντ mixing SO(10) GUT Observable effect in LHCb
Neutrino mixing, combined with SO(10) GUT, predicts visible effects in LHCb: The Box Diagram Bs mixing: BsDs-π+ CP phase: BsJ/ψφ The Penguin Diagram/Rare Decay Rare decays: B(s)(K*)μμ + = νµντ mixing SO(10) GUT Observable effect in LHCb 15 Dec 2005 Search for New Physics with the LHCb detector - MIAMI Niels Tuning

23 Backup Slides 15 Dec 2005 Search for New Physics with the LHCb detector - MIAMI Niels Tuning

24 bsγ Experimental constraints Example: mg~200 GeV, mR3~1200 GeV:
BR(bsγ)SM = (3.6±0.3) 10-4 BR(bsγ)exp = (3.3±0.3) 10-4 BR(BK*γ)exp = (4.01±0.20) 10-5 It is possible to increase Δms, given BR(bsγ): Example: mg~200 GeV, mR3~1200 GeV: BR(bsγ) : +16% Δms : 30 ps-1 sin2β B→φKs : -0.5 Harnik,Larson,Murayama Phys.Rev.D69(094024),2004 hep-ph/ 15 Dec 2005 Search for New Physics with the LHCb detector - MIAMI Niels Tuning

25 SM vs MSSM: Bsμ+μ- SM MSSM Tevatron excluded MSSM parameter scan:
A.Dedes, Mod.Phys.Lett.A18(2627),2003, hep-ph/ 15 Dec 2005 Search for New Physics with the LHCb detector - MIAMI Niels Tuning

26 B0Xsμμ μ BR(B0Xsμμ) well measured Additional handle: FB-asymmetry
Annual yield: 4400 events, S/B~3 μ Ali et al Phys.Rev.D61(074024),2000, hep-ph/ 15 Dec 2005 Search for New Physics with the LHCb detector - MIAMI Niels Tuning

27 Comparison to other experiments
GENERAL Tevatron LHCb ATLAS/CMS √s (TeV) 2 14 σ(pp bb)(μb) 100 500 L (cm-2s-1) 2008 4.1031 2.1032 1033 BsDsπ Tevatron LHCb ATLAS Mass resolution (MeV) 20 14 46 τ resolution (fs) 100 40 Tagging εD2 (%) 1.4 6 4 L (fb-1) 0.4 2 30 years 1 3 900 80k 8k S/B >1 Numbers obtained from various presentations in the last year No explicit blessing, just implicit... Bsμμ Tevatron LHCb ATLAS CMS PTμ min (trigger) 2 1.2 6 3 L (fb-1) 10 Mass resolution (MeV) 90 18 80 46 Bsμμ / year 1 30 9 7 background / year 4 <100 <20 <1 BsJ/ψφ Tevatron LHCb ATLAS CMS L (fb-1) 0.260 2 30 10 years - 1 3 203 120k 300k 50k S/B ~2 σ(sinφs) 0.06 0.04 0.028 <7.10-9 15 Dec 2005 Search for New Physics with the LHCb detector - MIAMI Niels Tuning

28 SU(5): The simplest GUT The simplest GUT is SU(5) Structure:
24 gauge bosons 8 gluons 4 W,Z,γ 12 bosons 3 coloured Y (q=-1/3) 3 coloured X (q=-4/3) X,Y sometimes called leptoquarks or Higgs triplets B, L violated, but B-L conserved 24 Bosons Structure: Fermions: 10 +5 5 = ( 1,2) + (3,1) 10 = ( 1,1) + (3,1) + ( 3,2) Add reference 15 Fermions Note: From5 follows: qd=1/3 qe From 10 follows: qu=-2 qd Relation between charge and color 15 Dec 2005 Search for New Physics with the LHCb detector - MIAMI Niels Tuning

29 GUT: Proton decay… p π0 e+ mp=935 MeV Super-Kamiokande limits:
Data Proton Decay MC mp=935 MeV Super-Kamiokande limits: τp> years Corresponding to <1 kg of the earth Phys.Rev.Lett.81 (3319) 1998, hep-ex/ 15 Dec 2005 Search for New Physics with the LHCb detector - MIAMI Niels Tuning

30 SO(10) 1 SO(10)  SU(5) x U(1) 16 = 10 +5 + 1 Fermions: 10=[Q,uc,ec] 5 = [dc,L] 1 = νR Multiplets like: (srR,sbR,sgR,νμL,μL) and (brR,bbR,bgR,ντL,τL) 10 So, SO(10)… … unifies all fermions in 1 multiplet … breaks simply to the Standard Model … explains bizarre charge assignments … obtains unification (in its supersymmetric version) … accomodates p decay bounds (due to big MGUT) … includes the right-handed neutrino SU(5) Question: What does the presence of the right-handed neutrino imply, given the neutrino mixing? 5 15 Dec 2005 Search for New Physics with the LHCb detector - MIAMI Niels Tuning

31 The model: SUSY SO(10) Why SO(10) ?? Small extension of SU(5)
SO(10)  SU(5) x U(1) 16 = 10 +5 + 1 It nicely incorporates the right-handed ν The see-saw mechanism “explains” small non-zero neutrino mass, and even relates MνRMGUT It relates neutrino mixing to squark mixing Superpotential: (16 are fermions, 10 Higgses) YU contains the large top coupling YU can be symmetric. In Yu diagonal basis we have: Break to SU(5): Break to MSSM (+rh ν): Hu, Hd … vu/vd=tanβ Neutrino mixing angle bR Chang, Masiero, Murayama Phys.Rev.D67 (075013), 2003, hep-ph/ Without neutrino mass, UMNS could be rotated away 15 Dec 2005 Search for New Physics with the LHCb detector - MIAMI Niels Tuning

32 S0(10) and see-saw So SO(10) … …contains the right handed neutrino
Its mass arrises naturally through the see-saw mechanism MνR ~v2/mν MνR = (246 GeV)2/0.05eV =1015GeV GUT scale: 1015 GeV  coincedence? 15 Dec 2005 Search for New Physics with the LHCb detector - MIAMI Niels Tuning

33 Neutrino masses: seesaw
Dirac masses: Majorana mass for right-handed ν: ν =ν From neutrino mixing: Relation between mν, MEW, MGUT … 15 Dec 2005 Search for New Physics with the LHCb detector - MIAMI Niels Tuning

34 Neutrino mixing: SNO 8B →νe νe→νμτ MSW oscillations:
Δm2= eV2, tan2θ12=0.45 Δm2= eV2, tan2θ12=0.34 SNO Coll., Q.R. Ahmad et al. Phys.Rev.Lett.89 (011302),2002, nucl-ex/ SNO Coll., Q.R. Ahmad et al. Phys.Rev.Lett.89 (011302),2002, nucl-ex/ , nucl-ex/ 15 Dec 2005 Search for New Physics with the LHCb detector - MIAMI Niels Tuning

35 EDM of the Neutron Larmor spin Precession
Standard Model: dn<10-31 e cm A nonzero value is forbidden by P- and T-invariance SUSY: dn<10-25 e cm Larmor spin Precession Laboratory Limit year ILL < ‘90 PNPI < ‘96 < ‘99 < ‘04 PSI < ‘05 LANL,ILL < ’10? Phys.Rev.Lett.82(907),1999 J.Ellis, Nucl.Instrum.Meth.A284(33),1989 15 Dec 2005 Search for New Physics with the LHCb detector - MIAMI Niels Tuning

36 µ→e γ BR(µ→e γ)SM=0 Experimental Limit (MEG Coll. At PSI)
J.Hisano et al.,Phys. Lett. B391 (1997) 341 R. Barbieri et al.,Nucl. Phys. B445(1995) 215 Experimental Limit (MEG Coll. At PSI) BR(µ→e γ)< BR(µ→e γ)SM=0 SU(5) with right-handed neutrinos Experimental Bound 15 Dec 2005 Search for New Physics with the LHCb detector - MIAMI Niels Tuning

37 Not only SUSY can cause observable effects…
Composing new models which seek to explain the observed hierarchy of masses and the CKM matrix is a cottage industry, with very fruitful discussions between theory and experiment… 15 Dec 2005 Search for New Physics with the LHCb detector - MIAMI Niels Tuning

38 B mixing Probability that B0 decays asB0, or B0 : P(B0 B0) P(B0B0)
Decay probability 15 Dec 2005 Search for New Physics with the LHCb detector - MIAMI Niels Tuning

39 CKM 15 Dec 2005 Search for New Physics with the LHCb detector - MIAMI Niels Tuning

40 Computing Dmd: Mixing Diagrams
GIM(i.e. VCKM unitarity): if u,c,t same mass, everything cancels! Highly non-trivial calculation. Eta_B is a QCD factor~0.55. The decay constant f_B ~ 175 MeV , the bag factor B_B~1.3 Dominated by top quark mass: 15 Dec 2005 Search for New Physics with the LHCb detector - MIAMI Niels Tuning

41 LHCb yields and background
Nominal year = 1012 bb pairs produced (107 s at L=21032 cm2s1 with bb=500 b) Yields include factor 2 from CP-conjugated decays Branching ratios from PDG or SM predictions R.Forty, CKM 2005 15 Dec 2005 Search for New Physics with the LHCb detector - MIAMI Niels Tuning

42 Baryon Asssymetry Leptogenesis Baryogenesis through sphaleron
Buchmüller, Wyler Phys.Lett.B521 (291),2001 hep-ph/ Leptogenesis Baryogenesis through sphaleron 15 Dec 2005 Search for New Physics with the LHCb detector - MIAMI Niels Tuning


Download ppt "Search for New Physics with the LHCb Detector"

Similar presentations


Ads by Google