Presentation is loading. Please wait.

Presentation is loading. Please wait.

Quantum control using diabatic and adibatic transitions

Similar presentations


Presentation on theme: "Quantum control using diabatic and adibatic transitions"— Presentation transcript:

1 Quantum control using diabatic and adibatic transitions
Diego A. Wisniacki University of Buenos Aires

2 Colaboradores-Referencias Colaborators
Gustavo Murgida (UBA) Pablo Tamborenea (UBA) Short version ---> PRL 07, cond-mat/ APS ICCMSE

3 Outline Introduction The system: quasi-one-dimensional quantum dot with 2 e inside Landau- Zener transitions in our system The method: traveling in the spectra Results Final Remarks

4 Introduction Desired state

5 Introduction Main idea of our work
To travel in the spectra of eigenenergies Control parameter

6 Introduction To navigate the spectra

7 Introduction To navigate the spectra

8 Introduction To navigate the spectra

9 Introduction To navigate the spectra

10 The system Quasi-one-dimensional quantum dot:
Confining potential: doble quantum well filled with 2 e

11 Colaboradores-Referencias The system
The Hamiltonian of the system: Time dependent electric field Coulombian interaction Note: no spin term-we assume total spin wavefunction: singlet

12 The system Interaction induce chaos PRE 01 Fendrik, Sanchez,Tamborenea
System: 1 well, 2 e Nearest neighbor spacing distribution

13 Colaboradores-Referencias
The system We solve numerically the time independent Schroeringer eq. Electric field is considered as a parameter Characteristics of the spectrum (eigenfunctions and eigenvalues)

14 The system Spectra lines Avoided crossings

15 Colaboradores-Referencias
The system Colaboradores-Referencias Cero slope delocalized Negative slope e¯ in the left dot Positive slope e¯ in the right dot

16 Landau-Zener transitions in our model
LZ model hyperbolas Linear functions

17 Landau-Zener transitions in our model
LZ model if Probability to remain in the state 1 Probability to jump to the state 2

18 Landau-Zener transitions in our model
LZ model Adibatic transitions Diabatic transitions

19 Colaboradores-Referencias
Landau-Zener transitions in our model Colaboradores-Referencias We study the prob. transition in several ac. For example: Full system LZ prediction 2 level system E(t)

20 Colaboradores-Referencias
Landau-Zener transitions in our model Colaboradores-Referencias We study the prob. transition in several ac. For example: 2 level system Full system

21 The method: navigating the spectrum
Choose the initial state and the desired final state in the spectra Find a path in the spectra Avoid adiabatic transitions in very small avoided crossings We use adiabatic and rapid transitions to travel in the spectra If it is posible try to make slow variations of the parameter

22 Results First example: localization of the e¯ in the left dot
EPL 01 Tamborenea, Metiu (sudden switch method) LL

23 Results First example: localization of the e¯ in the left dot
EPL 01 Tamborenea, Metiu (sudden switch method)

24 Colaboradores-Referencias
Results Second example: complex path

25 Colaboradores-Referencias
Results Second example: complex path

26 Colaboradores-Referencias
Results Second example: complex path

27 Colaboradores-Referencias
Results Second example: complex path

28 Colaboradores-Referencias
Results Second example: complex path

29 Colaboradores-Referencias
Results Second example: complex path

30 Colaboradores-Referencias
Results Second example: complex path

31 Colaboradores-Referencias
Results Second example: complex path

32 Colaboradores-Referencias
Results Second example: complex path

33 Colaboradores-Referencias
Results Second example: complex path

34 Colaboradores-Referencias
Results Second example: complex path

35 Colaboradores-Referencias
Results Third example: more complex path

36 Results

37 Colaboradores-Referencias
Results Forth example: target state a coherent superposition

38 Colaboradores-Referencias
Results Forth example: target state a coherent superposition

39 Colaboradores-Referencias
Results Forth example: target state a coherent superposition

40 Colaboradores-Referencias
Results Forth example: target state a coherent superposition

41 Colaboradores-Referencias
Results Forth example: target state a coherent superposition

42 Colaboradores-Referencias
Results Forth example: target state a coherent superposition

43 Colaboradores-Referencias
Results Forth example: target state a coherent superposition

44 Colaboradores-Referencias
Results Forth example: target state a coherent superposition

45 Colaboradores-Referencias
The method: questions Is our method generic? We need well defined avoided crossings Stadium billiard LZ transitions Sanchez, Vergini DW PRE 96 a/R Is our method experimentally possible?

46 Colaboradores-Referencias
Final Remarks Colaboradores-Referencias We found a method to control quantum systems Our method works well: With our method it is posible to travel in the spectra of the system We can control several aspects of the wave function (localization of the e¯, etc).

47 Colaboradores-Referencias
Final Remarks Colaboradores-Referencias We can also obtain a combination of adiabatic states Control of chaotic systems Decoherence??? Next step???.


Download ppt "Quantum control using diabatic and adibatic transitions"

Similar presentations


Ads by Google