Download presentation
Presentation is loading. Please wait.
Published byCora Rich Modified over 6 years ago
1
Quantum control using diabatic and adibatic transitions
Diego A. Wisniacki University of Buenos Aires
2
Colaboradores-Referencias Colaborators
Gustavo Murgida (UBA) Pablo Tamborenea (UBA) Short version ---> PRL 07, cond-mat/ APS ICCMSE
3
Outline Introduction The system: quasi-one-dimensional quantum dot with 2 e inside Landau- Zener transitions in our system The method: traveling in the spectra Results Final Remarks
4
Introduction Desired state
5
Introduction Main idea of our work
To travel in the spectra of eigenenergies Control parameter
6
Introduction To navigate the spectra
7
Introduction To navigate the spectra
8
Introduction To navigate the spectra
9
Introduction To navigate the spectra
10
The system Quasi-one-dimensional quantum dot:
Confining potential: doble quantum well filled with 2 e
11
Colaboradores-Referencias The system
The Hamiltonian of the system: Time dependent electric field Coulombian interaction Note: no spin term-we assume total spin wavefunction: singlet
12
The system Interaction induce chaos PRE 01 Fendrik, Sanchez,Tamborenea
System: 1 well, 2 e Nearest neighbor spacing distribution
13
Colaboradores-Referencias
The system We solve numerically the time independent Schroeringer eq. Electric field is considered as a parameter Characteristics of the spectrum (eigenfunctions and eigenvalues)
14
The system Spectra lines Avoided crossings
15
Colaboradores-Referencias
The system Colaboradores-Referencias Cero slope delocalized Negative slope e¯ in the left dot Positive slope e¯ in the right dot
16
Landau-Zener transitions in our model
LZ model hyperbolas Linear functions
17
Landau-Zener transitions in our model
LZ model if Probability to remain in the state 1 Probability to jump to the state 2
18
Landau-Zener transitions in our model
LZ model Adibatic transitions Diabatic transitions
19
Colaboradores-Referencias
Landau-Zener transitions in our model Colaboradores-Referencias We study the prob. transition in several ac. For example: Full system LZ prediction 2 level system E(t)
20
Colaboradores-Referencias
Landau-Zener transitions in our model Colaboradores-Referencias We study the prob. transition in several ac. For example: 2 level system Full system
21
The method: navigating the spectrum
Choose the initial state and the desired final state in the spectra Find a path in the spectra Avoid adiabatic transitions in very small avoided crossings We use adiabatic and rapid transitions to travel in the spectra If it is posible try to make slow variations of the parameter
22
Results First example: localization of the e¯ in the left dot
EPL 01 Tamborenea, Metiu (sudden switch method) LL
23
Results First example: localization of the e¯ in the left dot
EPL 01 Tamborenea, Metiu (sudden switch method)
24
Colaboradores-Referencias
Results Second example: complex path
25
Colaboradores-Referencias
Results Second example: complex path
26
Colaboradores-Referencias
Results Second example: complex path
27
Colaboradores-Referencias
Results Second example: complex path
28
Colaboradores-Referencias
Results Second example: complex path
29
Colaboradores-Referencias
Results Second example: complex path
30
Colaboradores-Referencias
Results Second example: complex path
31
Colaboradores-Referencias
Results Second example: complex path
32
Colaboradores-Referencias
Results Second example: complex path
33
Colaboradores-Referencias
Results Second example: complex path
34
Colaboradores-Referencias
Results Second example: complex path
35
Colaboradores-Referencias
Results Third example: more complex path
36
Results
37
Colaboradores-Referencias
Results Forth example: target state a coherent superposition
38
Colaboradores-Referencias
Results Forth example: target state a coherent superposition
39
Colaboradores-Referencias
Results Forth example: target state a coherent superposition
40
Colaboradores-Referencias
Results Forth example: target state a coherent superposition
41
Colaboradores-Referencias
Results Forth example: target state a coherent superposition
42
Colaboradores-Referencias
Results Forth example: target state a coherent superposition
43
Colaboradores-Referencias
Results Forth example: target state a coherent superposition
44
Colaboradores-Referencias
Results Forth example: target state a coherent superposition
45
Colaboradores-Referencias
The method: questions Is our method generic? We need well defined avoided crossings Stadium billiard LZ transitions Sanchez, Vergini DW PRE 96 a/R Is our method experimentally possible?
46
Colaboradores-Referencias
Final Remarks Colaboradores-Referencias We found a method to control quantum systems Our method works well: With our method it is posible to travel in the spectra of the system We can control several aspects of the wave function (localization of the e¯, etc).
47
Colaboradores-Referencias
Final Remarks Colaboradores-Referencias We can also obtain a combination of adiabatic states Control of chaotic systems Decoherence??? Next step???.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.