Download presentation
Presentation is loading. Please wait.
Published byMeryl Cole Modified over 6 years ago
3
Evaluate the expression if w = -4, x = 2, y = ½, and z = -6.
2. |6 + z| - |7| Original problem. |6 + (-6)| - |7| Substitute values for the variables. |0| - |7| Simplify inside each absolute value. 0 – 7 = Take absolute values and simplify. Final Answer is -7. 6. |7 – x| + |3x| Original problem. |7 – 2| + |3(2)| Substitute values for the variables. |5| - |6| Simplify inside each absolute value. = Take absolute values and simplify. Final Answer is 11.
4
Evaluate the expression if w = -4, x = 2, y = ½, and z = -6.
|w| + 2|z – 3y| Original problem. 5|-4| + 2|-6 – 3(1/2)| Substitute values for the variables. 5|-4| + 2|-7 ½ | Simplify inside each absolute value. 5(4) + 2(-15/2) = 5 Take absolute values and simplify. Final Answer is 5. |wx| + (1/4)|4x + 8y| Original problem. 3|(-4)(2)| + (1/4)|4(2) + 8(1/2)| Substitute values for the variables. 3|-8| + (1/4)|12| Simplify inside each absolute value. = 27 Take absolute values and simplify. Final Answer is 27.
5
Evaluate the expression if w = -4, x = 2, y = ½, and z = -6.
18. |xyz| + |wxz| Original problem. |(2)(1/2)(-6)| + |(-4)(2)(-6)| Substitute values for the variables. |-6| + |48| Simplify inside each absolute value. = Take absolute values and simplify. Final Answer is 54. 22. |yz – 4w| - w Original problem. |(1/2)(-6) – 4(-4)| - (-4) Substitute values for the variables. |13| - (-4) Simplify inside each absolute value. = 17 Take absolute values and simplify. Final Answer is 17.
9
Solve the equation. Check your solutions.
|15 – 2k| = Original Equation. Since Absolute Value bars are isolated, just set up two equations to be solved. One that is a positive answer the other a negative answer. a. 15 – 2k = b. 15 – 2k = -45 15 – 2k = move 15. -2k = move -2. k = Solution. 15 – 2k = move 15. -2k = move -2. k = Solution. Check the solutions k = -15 and 30 into original equation. k = k = 30 |15 – 2k| = |15 – 2k| = 45 |15 – 2(-15)| = |15 – 2(30)| = 45 |45| = yes |-45| = yes Final Answer is k = -15 and 30.
10
Solve the equation. Check your solutions.
8. |8 + 5a| = 14 – a Original Equation. Since Absolute Value bars are isolated, just set up two equations to be solved. One that is a positive answer the other a negative answer. a a = 14 – a b a = -(14 – a) 8 + 5a = 14 – 1a move -1a. 8 + 6a = move 8. 6a = move 6. a = solution. 8 + 5a = a move 1a. 8 + 4a = move 8. 4a = move 4. a = -22/4 = -11/2 solution. Check the solutions a = 1 and -11/2 into original equation. k = k = -11/2 |8 + 5a| = 14 – a |8 + 5a| = 14 – a |8 + 5(1)| = 14 – |8 + 5(-11/2)| = 14 – (-11/2) |13| = yes |-15/2| = 15 1/2 yes Final Answer is a = 1 and -11/2.
11
Solve the equation. Check your solutions.
10. |3x – 1| = 2x Original Equation. Since Absolute Value bars are isolated, just set up two equations to be solved. One that is a positive answer the other a negative answer. a. 3x – 1 = 2x b. 3x – 1 = -(2x + 11) 3x – 1 = 2x + 11 move 2x. x – 1 = move 1. x = 12 x = solution. 3x – 1 = -2x – move -2x. 5x – 1 = move 1. 5x = move 5. x = solution. Check the solutions x = 12 and -2 into original equation. k = k = -2 |3x – 1| = 2x |3x – 1| = 2x + 11 |3(12) – 1| = 2(12) |3(-2) – 1| = 2(-2) + 11 |35| = yes |-7| = yes Final Answer is k = 12 and -2.
12
Solve the equation. Check your solutions.
– 4x = 2|3x – 10| Original Equation. Since Absolute Value bars are not isolated, divide each side by 2 to isolate the bars. Then set up two equations to be solved. a. 20 – 2x = 3x – b. 20 – 2x = -(3x – 10) 20 – 2x = 3x – 10 move 3x. 20 – 5x = move 20. -5x = move -5. x = solution. 20 – 2x = -3x move -3x. 20 + 1x = move 20. 1x = move 1. x = solution. Check the solutions x = 6 and -10 into original equation. k = k = -10 40 – 4x = 2|3x – 10| – 4x = 2|3x – 10| 40 – 4(6) = 2|3(6) – 10| – 4(-10) = 2|3(-10) – 10| 16 = 2(8) yes = 2(40) yes Final Answer is k = 6 and -10.
13
Solve the equation. Check your solutions.
14. |4b + 3| = 15 – 2b Original Equation. Since Absolute Value bars are isolated, just set up two equations to be solved. One that is a positive answer the other a negative answer. a. 4b + 3 = 15 – 2b b. 4b + 3 = -(15 – 2b) 4b + 3 = 15 – 2b move -2b. 6b + 3 = move 3. 6b = move 6. b = solution. 4b + 3 = b move 2b. 2b + 3 = move 3. 2b = move 5. b = solution. Check the solutions x = 2 and -9 into original equation. k = k = -9 |4b + 3| = 15 – 2b |4b + 3| = 15 – 2b |4(2) + 3| = 15 – 2(2) |4(-9) + 3| = 15 – 2(-9) |11| = yes |-33| = yes Final Answer is k = 2 and -9.
14
Solve the equation. Check your solutions.
16. |16 – 3x| = 4x Original Equation. Since Absolute Value bars are isolated, just set up two equations to be solved. One that is a positive answer the other a negative answer. a. 16 – 3x = 4x – b. 16 – 3x = -(4x – 12) 16 – 3x = 4x – 12 move 4x. 16 – 7x = move 16. -7x = move -7. x = 4/ solution. 16 – 3x = -4x move -4x. 16 + 1x = move 16. 1x = move 1. b = -1/4 solution. Check the solutions x = 4/7 and -1/4 into original equation. k = 4/ k = -1/4 |16 – 3x| = 4x – |16 – 3x| = 4x – 12 |16 – 3(4/7)| = 4(4/7) – 12 |16 – 3(-1/4)| = 4(-1/4) – 12 |100/7| = -68/ no |16 3/4| = no Final Answer is No Solution.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.