Presentation is loading. Please wait.

Presentation is loading. Please wait.

Advances in Random Matrix Theory: Let there be tools

Similar presentations


Presentation on theme: "Advances in Random Matrix Theory: Let there be tools"— Presentation transcript:

1 Advances in Random Matrix Theory: Let there be tools
Alan Edelman Brian Sutton, Plamen Koev, Ioana Dumitriu, Raj Rao and others MIT: Dept of Mathematics, Computer Science AI Laboratories World Congress, Bernoulli Society Barcelona, Spain Wednesday July 28, 2004 1/18/2019

2 Tools So many applications …
Random matrix theory: catalyst for 21st century special functions, analytical techniques, statistical techniques In addition to mathematics and papers Need tools for the novice! Need tools for the engineers! Need tools for the specialists! 1/18/2019

3 Themes of this talk Tools for general beta
What is beta? Think of it as a measure of (inverse) volatility in “classical” random matrices. Tools for complicated derived random matrices Tools for numerical computation and simulation 1/18/2019

4 Wigner’s Semi-Circle The classical & most famous rand eig theorem
Let S = random symmetric Gaussian MATLAB: A=randn(n); S=(A+A’)/2; S known as the Gaussian Orthogonal Ensemble Normalized eigenvalue histogram is a semi-circle Precise statements require n etc. n=20; s=30000; d=.05; %matrix size, samples, sample dist e=[]; %gather up eigenvalues im=1; %imaginary(1) or real(0) for i=1:s, a=randn(n)+im*sqrt(-1)*randn(n);a=(a+a')/(2*sqrt(2*n*(im+1))); v=eig(a)'; e=[e v]; end hold off; [m x]=hist(e,-1.5:d:1.5); bar(x,m*pi/(2*d*n*s)); axis('square'); axis([ ]); hold on; t=-1:.01:1; plot(t,sqrt(1-t.^2),'r');

5 G 6 5 4 3 2 1 sym matrix to tridiagonal form
Same eigenvalue distribution as GOE: O(n) storage !! O(n2) compute 1/18/2019

6 G 6 5 4 3 2  General beta beta:
1: reals 2: complexes 4: quaternions Bidiagonal Version corresponds To Wishart matrices of Statistics 1/18/2019

7 Tools Motivation: A condition number problem
Jack & Hypergeometric of Matrix Argument MOPS: Ioana Dumitriu’s talk The Polynomial Method The tridiagonal numerical 109 trick 1/18/2019

8 Tools Motivation: A condition number problem
Jack & Hypergeometric of Matrix Argument MOPS: Ioana Dumitriu’s talk The Polynomial Method The tridiagonal numerical 109 trick 1/18/2019

9 Numerical Analysis: Condition Numbers
(A) = “condition number of A” If A=UV’ is the svd, then (A) = max/min . Alternatively, (A) =  max (A’A)/ min (A’A) One number that measures digits lost in finite precision and general matrix “badness” Small=good Large=bad The condition of a random matrix??? 1/18/2019

10 Von Neumann & co. estimates (1947-1951)
“For a ‘random matrix’ of order n the expectation value has been shown to be about n” Goldstine, von Neumann “… we choose two different values of , namely n and 10n” Bargmann, Montgomery, vN “With a probability ~1 …  < 10n” X  P(<n) 0.02 P(< 10n)0.44 P(<10n) 0.80 1/18/2019

11 Random cond numbers, n
Distribution of /n Experiment with n=200 1/18/2019

12 Finite n n= n=25 n= n=100 1/18/2019

13 Condition Number Distributions
P(κ/n > x) ≈ 2/x P(κ/n2 > x) ≈ 4/x2 Real n x n, n∞ Generalizations: β: 1=real, 2=complex finite matrices rectangular: m x n Complex n x n, n∞ 1/18/2019

14 Condition Number Distributions
P(κ/n > x) ≈ 2/x P(κ/n2 > x) ≈ 4/x2 Square, n∞: P(κ/nβ > x) ≈ (2ββ-1/Γ(β))/xβ (All Betas!!) General Formula: P(κ>x) ~Cµ/x β(n-m+1), where µ= β(n-m+1)/2th moment of the largest eigenvalue of Wm-1,n+1 (β) and C is a known geometrical constant. Density for the largest eig of W is known in terms of 1F1((β/2)(n+1), ((β/2)(n+m-1); -(x/2)Im-1) from which µ is available Tracy-Widom law applies probably all beta for large m,n. Johnstone shows at least beta=1,2. Real n x n, n∞ Complex n x n, n∞ 1/18/2019

15 Tools Motivation: A condition number problem
Jack & Hypergeometric of Matrix Argument MOPS: Ioana Dumitriu’s talk The Polynomial Method The tridiagonal numerical 109 trick 1/18/2019

16 ∫ pκ(x)pλ(x) Δ(x)β ∏i w(xi)dxi = δκλ
Multivariate Orthogonal Polynomials & Hypergeometrics of Matrix Argument Ioana Dumitriu’s talk The important special functions of the 21st century Begin with w(x) on I ∫ pκ(x)pλ(x) Δ(x)β ∏i w(xi)dxi = δκλ Jack Polynomials orthogonal for w=1 on the unit circle. Analogs of xm 1/18/2019

17 Multivariate Hypergeometric Functions
1/18/2019

18 Multivariate Hypergeometric Functions
1/18/2019

19 Wishart (Laguerre) Matrices!
1/18/2019

20 Plamen’s clever idea 1/18/2019

21 Tools Motivation: A condition number problem
Jack & Hypergeometric of Matrix Argument MOPS: Ioana Dumitriu’s talk The Polynomial Method The tridiagonal numerical 109 trick 1/18/2019

22 Mops (Dumitriu etc.) Symbolic
1/18/2019

23 Symbolic MOPS applications
A=randn(n); S=(A+A’)/2; trace(S^4) det(S^3) 1/18/2019

24 Symbolic MOPS applications
β=3; hist(eig(S)) 1/18/2019

25 Smallest eigenvalue statistics
A=randn(m,n); hist(min(svd(A).^2)) 1/18/2019

26 Tools Motivation: A condition number problem
Jack & Hypergeometric of Matrix Argument MOPS: Ioana Dumitriu’s talk The Polynomial Method -- Raj! The tridiagonal numerical 109 trick 1/18/2019

27 Courtesy of the Polynomial Method
RM Tool – Raj! Courtesy of the Polynomial Method 1/18/2019

28 1/18/2019

29 Tools Motivation: A condition number problem
Jack & Hypergeometric of Matrix Argument MOPS: Ioana Dumitriu’s talk The Polynomial Method The tridiagonal numerical 109 trick 1/18/2019

30 Everyone’s Favorite Tridiagonal
-2 1 1 n2 d2 dx2 1/18/2019

31 Everyone’s Favorite Tridiagonal
-2 1 G 1 (βn)1/2 1 n2 + dW β1/2 d2 dx2 + 1/18/2019

32 Stochastic Operator Limit
, dW β 2 x dx d + - , N(0,2) χ n β 2 1 ~ H 2) (n 1) ÷ ø ö ç è æ - , G β 2 H n + 1/18/2019

33 Largest Eigenvalue Plots
1/18/2019

34 MATLAB beta=1; n=1e9; opts.disp=0;opts.issym=1;
alpha=10; k=round(alpha*n^(1/3)); % cutoff parameters d=sqrt(chi2rnd( beta*(n:-1:(n-k-1))))'; H=spdiags( d,1,k,k)+spdiags(randn(k,1),0,k,k); H=(H+H')/sqrt(4*n*beta); eigs(H,1,1,opts) 1/18/2019

35 Tricks to get O(n9) speedup
Sparse matrix storage (Only O(n) storage is used) Tridiagonal Ensemble Formulas (Any beta is available due to the tridiagonal ensemble) The Lanczos Algorithm for Eigenvalue Computation ( This allows the computation of the extreme eigenvalue faster than typical general purpose eigensolvers.) The shift-and-invert accelerator to Lanczos and Arnoldi (Since we know the eigenvalues are near 1, we can accelerate the convergence of the largest eigenvalue) The ARPACK software package as made available seamlessly in MATLAB (The Arnoldi package contains state of the art data structures and numerical choices.) The observation that if k = 10n1/3 , then the largest eigenvalue is determined numerically by the top k × k segment of n. (This is an interesting mathematical statement related to the decay of the Airy function.) 1/18/2019

36 Random matrix tools! 1/18/2019


Download ppt "Advances in Random Matrix Theory: Let there be tools"

Similar presentations


Ads by Google