Download presentation
Presentation is loading. Please wait.
Published byAlexina Skinner Modified over 5 years ago
1
Section 9.1 Day 4 Graphing Quadratic Functions
Algebra 1
2
Learning Targets Define and identify a quadratic function in standard form Identify a parabola shape and graph which is unique to the quadratic function Define and identify the axis of symmetry, vertex, number of zeros, domain and range of a quadratic graph Identify if the quadratic function has a graph with a maximum or a minimum Graph a quadratic function using a table
3
Intercept Form Intercept Form: 𝑦=𝑎(𝑥−𝑝)(𝑥−𝑞) Graphing Procedure:
Identify the vertex: 𝑥= 𝑝+𝑞 2 Identify the Intercepts: 𝑝,0 , (𝑞,0) Plot the points Confirm the parabola shape
4
Example 1: Graphing 𝒙 𝒇(𝒙) 𝒙 𝒇(𝒙) 2 −4 −1 −9 Graph 𝑓 𝑥 =(𝑥−2)(𝑥+4)
−4 −1 −9 Graph 𝑓 𝑥 =(𝑥−2)(𝑥+4) Intercepts: 2, 0 , −4,0 Vertex: (−1, −9)
5
Example 1: Identifying Axis of Symmetry: Vertex: # of Zeros:
𝑥=−1 Vertex: (−1,−9) # of Zeros: 2 (x-intercepts) Maximum/Minimum: Minimum Domain: All Real Numbers Range: 𝑦≥−9
6
Example 2: Graphing 𝒙 𝒇(𝒙) 3 −2 1 2 6 1 4 𝒙 𝒇(𝒙)
Vertex: ,6 1 4 Intercepts: 3, 0 , (−2,0) 𝒙 𝒇(𝒙) 3 −2 1 2 6 1 4 𝒙 𝒇(𝒙)
7
Example 2: Identifying Axis of Symmetry: Vertex: # of Zeros:
𝑥= 1 2 Vertex: ( 1 2 ,6 1 4 ) # of Zeros: 2 (x-intercepts) Maximum/Minimum: Maximum Domain: All Real Numbers Range: 𝑦≤6 1 4
8
Example 3: Graphing 𝒙 𝒇(𝒙) 𝒙 𝒇(𝒙) 1 −3 −1 −4 Graph 𝑓 𝑥 =(𝑥−1)(𝑥+3)
−3 −1 −4 Graph 𝑓 𝑥 =(𝑥−1)(𝑥+3) Vertex: (−1, −4) Intercept: 1,0 , (−3,0)
9
Example 3: Identifying Axis of Symmetry: Vertex: # of Zeros:
𝑥=−1 Vertex: (−1,− 4) # of Zeros: 2 (x-intercepts) Maximum/Minimum: Minimum Domain: All Real Numbers Range: 𝑦≥−4
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.