Download presentation
Presentation is loading. Please wait.
1
ე კ ო ნ ო მ ე ტ რ ი კ ა 2012 Mლექცია 13 დროითი მწკრივების ანალიზი
ავტორეგრესიული მოდელები ლაგის განაწილებით ADL-მოდელი ე კ ო ნ ო მ ე ტ რ ი კ ა ნიკოლოზ ოსტაპენკო
2
ავტორეგრესიული მოდელები ლაგის განაწილებით ADL-მოდელი
აქამდე ჩვენ ვიკვლევდით მხოლოდ ერთ შემთხვევით პროცესს Yt ვიკვლევდით მას სტაციონალურობაზე, ვაგებდით პეოცესის მოდელს, ვახდენდით პროცესის პროგნოზირება. თუმცა ეკონომიკური მოვლენების შესწავლის დროს დიდ ინტერეს იწვევს სხვადასხვა ეკონომიკური ცვლადების ურთუერტ კავშირი. ეკონომიკური ცვლადები მიმდინარე მნიშვნელობები დამოკიდებული იქნება არა მხოლოდ მის წარსულ მნიშვნელობებზე არამდე აგრეთვე სხვა ცვლადების მიმდინარე და წარსულ მნიშვნელობაზე ანუ მათ ლაგებზე. ამ ტიპის მოდელებს ეწოდებათ ავტორეგრესიული მოდელები ლაგის განაწილებით ADL-მოდელი (autu regressive didtributed lag models). სხვანაირად ამ მოდელს უწოდებენ ARMAX მოდელს ARMA–სგან განსხვავებით აქ X ანაცვლებს შემთხვევით პროცესს. მოდელის ზოგადი სახე: ჩვენ შეგვიძლია იგი ლაგის ოპერატორებით გამოვსახოთ
3
ავტორეგრესიული მოდელები ლაგის განაწილებით ADL-მოდელი
ამ ტიპის მოდელს წეოდება მოდელი ლაგის განაწილებით DL-მოდელი (didtributed lag models). რომლისთვისაც მოკლრვადიანი, საშუალოვადიანი, გრძელვადიანი მულტიპლიკატორია (იმპულსზე რეაქცია), თუ მოდელიი ლოგარითმულია მაშინ ის ელასტიკურობის კოეფიციენტია კერძოდ მოდელის ზოგად სახეს თუ ჩავწერთ: მაშინ, მოკლევადიანი მულტიპლიკატორი საშუალო ვადიანი(შუალედური) მულტიპლიკატორი გრძელვადიანი მულტიპლიკატორი
4
შეცდომის კორექციის მოდელი –ECM
განვიხილოთ ADL(1,1)-მოდელი , გარდავქმნათ იგი: მიღებულ მოდელს შეცდომის კორექციის მოდელი ეწოდება EMC (error correction model). მოდელი საშუალებას იძლევა დავახასიათოთ გრძელვადიანი და მოკლევადიანი კავშირები. მოკლევადიანი მულტიპლიკატორი გრძელვადიანი წონასწორობის პირობა გრძელვადიანი მულტიპლიკატორი
5
შეცდომის კორექციის მოდელი –ECM
განვიხილოთ EMC(p,q)-მოდელი ს, ზოგადი სახე: ADL და EMC მოდელების აგების დროს დიდი მნიშვნელლობა აქვს ლაგის შერჩევას, რომელც პრობლემურ საკითხს წარმოადგენს, ამასთან დაკავშირებით არსებობს სხვადასხვა მეთოდები.
6
ლაგების არსებობის მიზეზები
ეკონომიკაში ლაგების არსებობის ბევრი მიზეზი არსებობს, რომელთა შორისაც შეგვიძლია გამოვყოთ შემდეგი მიზეზები: ფსიქოლოგიური მიზეზები – აღნიშნული უკავშირდება ადამიანების ქცევაში ინერციულობის არსებობას. მაგალითად ადამიანები ხარჯავენ ფულს თანმიმდევრობით და არა ერთბაშად. შემოსავლის შემცირების პირობებში ჩვევები რომელიც უკავშირდება ადამიანების გარკვეულ ცხოვრების წესს ადამიანებს უბიძგებს იგივე დონის მოხმარების შენარჩუნებისაკენ. ტექნოლოგიური მიზეზები – მაგალითად პერსონალური კომპიუტერების გამოგონებამ ერთბაშად არ ამოიღო ხმარებიდან საბეჭდი მანქანები. ახალი პროგრამული უზრუნველყოფის შექმნა ერთბაშად არ იწვევს მის დანერგვას. ინსტიტუციონალური მიზეზები – მაგალითად შრომითი კონტრაქტების პირობები შეზღუდულია კონტრაქტით განსაზღვრული ვადით. ეკონომიკური მაჩვენებლების ფორმირების მექანიზმი – მაგალითად, ინფლაცია წარმოადგენს ინერციულ პროცესს. აგრეთვე ფულის მულტიპლიკატორის ეფექტის რეალიზაციას გარკვეული დროითი ინტერვალი სჭირდება და სხვა
7
ლაგების განსაღვრის მეთოდები
ლაგების თანდათანობითი ზრდის მეთოდი – მეთოდის მიხედვით ვახდენთ ლაგების თანდათანობით დამატებას მოდელში. პროცედური დასრულების ნიშანი შეიძლება სხვადასხვა იყოს: ახალი ლაგის დამატების დროს მოცელული ცვლადის რომელიღაცა ლაგის კოეფიციენტი იცვლის ნიშანს. ამ შემთხვევაში მოდელში ვტოვებთ ცვლადის იმ რაოდენობის ლაგურ მნიშვნელობას რომლისთვისაც მოცემული ცვლადის კოეფიციენტის ნიშანი არ იცვლება. ახალი ლაგის დამატების დროს მისი კოეფიციენტი სტატისტიკურად არამნიშვნელოვანია. ამ შემთხვევაში მოდელში ვტოვებთ ცვლადის იმ რაოდენობის ლაგურ მნიშვნელობას რომლისთვისაც მოცემული ცვლადის კოეფიციენტი მნიშვნელოვანია. თუმცა ამ მეთოდის გამოყენებაში შეზღუდულები ვართ მოდელის თავისუფლების ხარისხის შემცირების გამო რაც ზრდის მოდელის სტანდარტულ შეცდომებს, აუარესებს შეფასებების ხარისხს, შესაზლოა გამოიწვიოს მულტიკოლენიალურობა. აგრეთვე ლაგების არასწორად განსაზღვრის გამო შესაძლოა ადგილი ჰქონდეს შეცდომებს მოდელის სპეციფიკაციაში.
8
კოიკას გარდაქმნა კოიკას განაწილებაში კოეფიციენტები წარმოადგენენ კლებადი გაომეტრიული პროგრესიით განაწილებულ შემთხვევით სიდიდეებს სადაც, ახასითებს კოეფიციენტების შემცირების სიჩქარეს (საანალიზო მემენტიდან დაშორებასთან ერთად). მოდელი შეიძლება გარდავქმნათ შემდეგი სახით: შემოვიღოთ აღნიშვნა და შევაფასოთ შემდეგი მოდელი მოდელში უნდა შევარჩიოთ პარამეტრი. პარამეტრის შერჩევის დროს უნდა გავჩერდეთ ისეთ მნიშვნელობაზრ რომლისთვისაც დეტერმინაციის კოეფიციენტი იქნება მაქსიმალური. მოდელიდა მიღენული პარამეტრებით შეგვილია თავდაპირველი მოდელის პარამეტრების განსაზღვრა.
9
კოიკას გარდაქმნა შეგვილძლია განვახორციელოთ გარდაქმნა შემდეგი სახით:
გამოვაკლოთ ერთმანეთ ეს ორი გამოსახულება: ავღნიშნოთ რომ აღნიშნული მოდელი საშუალებას გვაძლევას ავაგოთ მოდელი უსასრულო ლაგებით. ამასთან ტავიდან ავიცილოთ ლაგების ჩართვით გამოწვეულო მულტიკოლენიალურობის რისკი. მოდელში მოკლევადიანი მულტიპლიკატორია. გრძელვადიანი წონასწორობის პირობა კი იქნება საიდანაც: გრძელვადიანი წონასწორობის პირობაა, სადაც გრძელვადიანი მულტიპლიკატორი
10
კოიკას გარდაქმნა ადაფტური მოლოდინი მოდელი – მოცემულ მოდელში საშედეგო მნიშვნელობა დამოკიდებულია ფაქტორის მოსალოდნელ მნიშვნელობაზე, რომელიც განისაზღვრება ადაფტური მოლოდინით: ჩავსვათ მოლიოდინის მნიშვნელობა მოდელში და გარდავქმნათ: მოდელი წარმოადგენს შეცდომის კორაქციის მოდელს
11
კოიკას გარდაქმნა ნაწილობრივი კორექციის მოდელი (აქსელერატორის მოდელი) – მოცემულ მოდელში საშედეგო მნიშვნელობა წარმოადგენს წონასწოროლს (გრძელვადიანს/სასურველს) და არა ფაქტიურ მნიშვნელობას: კორექტირების კოეფიციენტი შერეული მოდელი:
12
ალმონის განაწილება ალმონის განაწილებაში კოეფიციენტები წარმოადგენენ ლაგების რიგის შეწონილ სიდიდეს პოლინომიალურ გამოსახულებაში: ზოგადი მოდელისათვის მაშინ მოდელში იტერაციულად უნდა შევარჩიოთ ლაგების რაოდენობა i და პოლინომის ხარისხი m.
13
ავტოკორელაციის შეფასება
ლაგის განაწილების მოდელებისათვის ავტოკორელაციის შეფასება დარბინ–უოტსონის კრიტერიუმით ვერ ხერხდება. ასეთი შემთხვევევებისათვის დარბინმა შემოგვთავაზა h-სტატისტიკა: სადაც არის კოეფიციენტის დისპერსია
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.