Download presentation
Presentation is loading. Please wait.
1
Intense Coherent Emission in Relativistic Shocks
้ซใจใใซใฎใผๅฎๅฎ็ฉ็ๅญฆ็ ็ฉถไผ2017 Intense Coherent Emission in Relativistic Shocks 2017/9/7 Masanori Iwamoto1, Takanobu Amano1, Masahiro Hoshino1, Yosuke Matsumoto2 [1]University of Tokyo; [2]Chiba University
2
Coherent Emission ๐ ๐ต > 10 12 K โcoherent emission
[Pietka+ 2015] Coherent Emission ๐ ร ๐ ๐ [GHzใปs] 10 12 K ๐ฟ ๐ [Jyใปkpc2] Black body radiation ๐ฟ ๐ = 2 ๐ ๐ต ๐ ๐ต ๐ 2 ๐ 2 4๐ ๐ 2 ๐ ๐ต : brightness temperature ๐ ๐ต > K โcoherent emission 2017/9/7 ้ซใจใใซใฎใผๅฎๅฎ็ฉ็ๅญฆ็ ็ฉถไผ2017
3
Synchrotron Maser Instability
Coherent EM wave radiation by synchrotron maser instability is a common feature of 1D relativistic shocks (e.g., Gallant+ 1992) Resonance between EM waves and relativistic cyclotron motion at the shock-transition region (Hoshino & Arons 1991) ๐ โ ๐ฅ ๐ฆ ๐ง shock front ๐ฉ ๐ upstream downstream ๐ฉ ๐ Synchrotron maser instability is responsible for Intense coherent emission Jupiter decametric (DAM) radio emission origin of fast radio burst? (Lyubarsky 2014) Particle acceleration preferential positron acceleration (Hoshino+ 1992) wakefield acceleration (Lyubarsky 2006; Hoshino 2008) 2017/9/7 ้ซใจใใซใฎใผๅฎๅฎ็ฉ็ๅญฆ็ ็ฉถไผ2017
4
๐ Dependence of Shock Structure
๐โก Poynting flux kinetic energy flux = ๐ต ๐ ๐พ 1 ๐ 1 ๐ ๐ ๐ 2 = ๐ ๐๐ 2 ๐ ๐๐ 2 still unknown in many astrophysical objects, depends on models Synchrotron Maser Instability excited by reflected particles at the shock transition growth rate โผ ๐ ๐๐ dominant at high ๐ (๐~0.1) Weibel Instability excited by effective temperature anisotropy at the shock transition growth rate โผ ๐ ๐๐ dominant at low ๐ (๐โฒ 10 โ2 ) ย Considering shock-transition region, we can see the counter-streaming electrons in the x direction. A small seed magnetic field ฮดBz in the z direction with wavevector pointing the y direction separates the counter-streaming particles, and induces net currents flowing in the x direction which reinforce the initial magnetic field. The mode is unstable for the wavevector perpendicular to the shock normal and thus appears only in multidimensional system.ย compete at low ๐? Question Can intense coherent emission be excited in multidimensional shocks? 2017/9/7 ้ซใจใใซใฎใผๅฎๅฎ็ฉ็ๅญฆ็ ็ฉถไผ2017
5
Coordinate system and geometry
Simulation Setting Coordinate system and geometry Parameters๏ผ time step: ๐ ๐๐ โ๐ก=1/40 grid size: โ๐ฅ/(๐/ ๐ ๐๐ )=1/40 number of grids: ๐ ๐ฅ ร ๐ ๐ฆ =20,000ร1,680 speed of light: ๐=1 particle number/cell: ๐ 1 โ ๐ฅ 2 =64 upstream Lorentz factor: ๐พ 1 =40 ๐พ 1 ๐ ยฑ Variable๏ผ ๐ ๐ โก Poynting flux electron kinetic energy flux = ๐ต ๐ ๐พ 1 ๐ 1 ๐ ๐ ๐ 2 = 2๐ข ๐ ๐ด 2 ๐ ๐ด : Alfvรฉn Mach number 2017/9/7 ้ซใจใใซใฎใผๅฎๅฎ็ฉ็ๅญฆ็ ็ฉถไผ2017
6
Global Shock Structure: High- ๐ ๐ Case
โdownstream upstreamโ plasma flow filaments EM waves filaments โ filamentation instability (Kaw+ 1973; Drake+ 1974)ย evidence that the EM wave is intense and coherent 2017/9/7 ้ซใจใใซใฎใผๅฎๅฎ็ฉ็ๅญฆ็ ็ฉถไผ2017
7
Global Shock Structure: Low- ๐ ๐ Case
โdownstream upstreamโ Weibel instability EM wave plasma flow ๐ ๐ ๐ต ๐ง ๐ต ๐ง Filamentary structure โ Weibel Instability EM waves are excited and persist even in the Weibel-dominated regime 2017/9/7 ้ซใจใใซใฎใผๅฎๅฎ็ฉ็ๅญฆ็ ็ฉถไผ2017
8
๐ Dependence of Wave Emission Efficiency
Weibel-dominated regime ๐ intense emission โwakefield acceleration? The amplitude in 2D is systematically smaller than that in 1D โย due to the inhomogeneity along the shock surface Strength parameter โRelativistic shocks at GRBs can excite intense emission under wide ๐ ๐โก ๐๐ธ ๐ ๐ ๐๐ โ ๐๐ธ๐ ๐ ๐ ๐ 2 โ ๐พ 1 2017/9/7 ้ซใจใใซใฎใผๅฎๅฎ็ฉ็ๅญฆ็ ็ฉถไผ2017
9
Summary We investigated EM wave emission efficiency in relativistic shocks via 2D PIC simulations.ย The large-amplitude EM wave can be excited even in the Weibel- dominated regime The intense coherent emission is expected for astrophysical objects such as GRBs The WFA needs a finite inertial difference between the positive and negative charges, we could not directly show the WFA But, the precursor wave emission efficiency measured in a pair plasma shock will also give a good estimate for an ionโelectron plasma because the emission mechanism itself is identical between the pair and ionโelectron plasmas, the actual particle acceleration efficiency must be comprehensively examined by directly performing simulations for relativistic ionโelectron shocks. Reference M. Iwamoto, T. Amano, M. Hoshino, Y. Matsumoto 2017, ApJ, 870, 52 doi: / /aa6d6f arXiv: 2017/9/7 ้ซใจใใซใฎใผๅฎๅฎ็ฉ็ๅญฆ็ ็ฉถไผ2017
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.