Presentation is loading. Please wait.

Presentation is loading. Please wait.

Design of Steel and Composite-Structures for Seismic Loading – Safety Requirements, Concepts and Methods – Prof. Dr.-Ing. Ekkehard Fehling, University.

Similar presentations


Presentation on theme: "Design of Steel and Composite-Structures for Seismic Loading – Safety Requirements, Concepts and Methods – Prof. Dr.-Ing. Ekkehard Fehling, University."— Presentation transcript:

1 Design of Steel and Composite-Structures for Seismic Loading – Safety Requirements, Concepts and Methods – Prof. Dr.-Ing. Ekkehard Fehling, University Kassel Dr.-Ing. Benno Hoffmeister, University / RWTH Aachen

2 Design of Buildings for Seismic Action reduced regularity
different structural systems for lateral bracing discontinuous bracing systems Diagonal bracing frame structure Ungleichmäßige Beanspruchung wegen verschiedener Massen, Steifigkeitssprünge etc. Nicht berücksichtigte Torsionseffekte bei L-förmigen Bauwerken Diagonal bracing

3 Design of Steel Structures for Seismic Action Ductility
Sudden or brittle failure shall not occur Examples: Buckling Connection failure Load Deformation Ductility bedeutet de Deformationsfähigkeit eines Tragwerks, bei der kein plötzliches Versagen von vitalen Membersn auftritt

4 Design of Steel Structures for Seismic Action Ductility
Examples: Typische Examples, die sich immer wiederholen, sind hier zu sehen

5 Design of Steel Structures for Seismic Action Ductility
Specially endangered: Corner Columns Typische Examples, die sich immer wiederholen, sind hier zu sehen most endangered column

6 Design of Steel Structures for Seismic Action Ductility
Examples: Typische Examples, die sich immer wiederholen, sind hier zu sehen

7 Design of Steel Structures for Seismic Action Dissipative Behaviour
Cyclic defomability with dissipation of energy Exploitation of plastic material behaviour Principle: Elastic behaviour Load Deformation Dissipative Behaviour ist neben der Ductility die Kerneigenschaft von erdbebenresistenten Bauwerken. Die Dissipation geht von plastisch verformbaren Elementen aus, wie hier am Example eines Kragarms dargestellt.

8 Design of Steel Structures for Seismic Action Dissipative Behaviour
Cyclic defomability with dissipation of energy Exploitation of plastic material behaviour Principle: Load Deformation Plastification Plastification

9 Design of Steel Structures for Seismic Action Dissipative Behaviour
Cyclic defomability with dissipation of energy Exploitation of plastic material behaviour Principle: Load Deformation Plastification dissipated energy Plastification

10 Design of Steel Structures for Seismic Action Dissipative Mechanisms
Bending (Frame) Normal Force (Bracings) Shear (ecc. Bracings) Die Dissipationsfähigkeit einzelner Elemente ergibt das Dissipative Behaviour eines Bauwerks.

11 Design of Steel Structures for Seismic Action Dissipative Mechanisms
Bending (Frame) Normal Force (Bracings) Shear (ecc. Bracings) Die Dissipationsfähigkeit einzelner Elemente ergibt das Dissipative Behaviour eines Bauwerks.

12

13

14

15

16 Design of Steel Structures for Seismic Action Dissipative Behaviour – Global System
Successive Formation of Plastic HInges Load Die Dissipationsfähigkeit einzelner Elemente ergibt das Dissipative Behaviour eines Bauwerks. Deformation

17 Design of Steel Structures for Seismic Action Dissipative Behaviour – Global System
Succesive Formation of Plastic Hinges Load Die Dissipationsfähigkeit einzelner Elemente ergibt das Dissipative Behaviour eines Bauwerks. Deformation

18 Design of Steel Structures for Seismic Action Dissipative Behaviour – Global System
Succesive Formation of Plastic Hinges Load Die Dissipationsfähigkeit einzelner Elemente ergibt das Dissipative Behaviour eines Bauwerks. Deformation

19 Design of Steel Structures for Seismic Action Dissipative Behaviour – Global System
Succesive Formation of Plastic Hinges Load Die Dissipationsfähigkeit einzelner Elemente ergibt das Dissipative Behaviour eines Bauwerks. Deformation

20 Design of Steel Structures for Seismic Action Dissipative Behaviour – cyclic
Experimental Investigations on Frame Structures Die Dissipationsfähigkeit einzelner Elemente ergibt das Dissipative Behaviour eines Bauwerks.

21

22

23 Design of Steel Structures for Seismic Action Functioning dissipative Mechanisms
Die Dissipationsfähigkeit einzelner Elemente ergibt das Dissipative Behaviour eines Bauwerks.

24 Design of Steel Structures for Seismic Action Inadequate Dissipation Capacity
Die Dissipationsfähigkeit einzelner Elemente ergibt das Dissipative Behaviour eines Bauwerks.

25 Design of dissipative Members „Overstrength“ of Material
Example S 235, nominal Yield Strength fy,k = 235 N/mm² Consequences: in the dissipative member the forces will become bigger than intended Failure of connections (e.g. bolts) Stability failure (e.g. columns) Stress 235 Overstrength Die Dissipationsfähigkeit einzelner Elemente ergibt das Dissipative Behaviour eines Bauwerks. Strain

26 Design of dissipative Members „Overstrength“ of Material
how to ensure dissipative behaviour Measures: Capacity Design (design of critical members and connections with „overstrength“) Limitation of maximum yield strength in dissipative Members Control of execution (strength as ordered = delivered strength?) Stress 235 Overstrength Die Dissipationsfähigkeit einzelner Elemente ergibt das Dissipative Behaviour eines Bauwerks. Strain

27 Design of dissipative Members Plastic Fatigue of Materials
Elastic Fatigue Strength Plastic Fatigue (Low Cycle Fatigue) Die Dissipationsfähigkeit einzelner Elemente ergibt das Dissipative Behaviour eines Bauwerks.

28 Design of dissipative Members Plastische Ermüdung des Werkstoffs
Elastic Fatigue Strength Plastic Fatigue (Low Cycle Fatigue) Δσ 104 5·106 >108 N 1 100 N ΔRpl Die Dissipationsfähigkeit einzelner Elemente ergibt das Dissipative Behaviour eines Bauwerks.

29 Design of dissipative Members Toughness of Material
Toughness of material – basic requirement for dissipation Die Dissipationsfähigkeit einzelner Elemente ergibt das Dissipative Behaviour eines Bauwerks.

30 Design of dissipative Members Zähigkeit des Werkstoffs
Toughness of material – basic requirement for dissipation Mesures: Selection of material quality / grade (sufficient toughness even for low temperatures) Dissipative zones outside the heat influence zones due to welding Die Dissipationsfähigkeit einzelner Elemente ergibt das Dissipative Behaviour eines Bauwerks.

31 Design of dissipative Members Stability of cross sections
Slender cross section show premature local buckling: dissipation will be less premature damage Die Dissipationsfähigkeit einzelner Elemente ergibt das Dissipative Behaviour eines Bauwerks.

32 Design of dissipative Members Stability of cross sections
Slender cross section show premature local buckling: dissipation will be less premature damage Measures: Compact Cross Sections (Cross sectional class 1) For thin walled Structures design for elastic behaviour consider stability aspects (e.g. fluid tanks) Die Dissipationsfähigkeit einzelner Elemente ergibt das Dissipative Behaviour eines Bauwerks.

33 Design für Dissipative Behaviour Global capacity design
g+q Die Dissipationsfähigkeit einzelner Elemente ergibt das Dissipative Behaviour eines Bauwerks. Vanchor Vanchor Nanchor Ncolumn

34

35

36

37

38 Design für Dissipative Behaviour local capacity design
Measures: avoid premature brittle failure of non dissipative connections for bolted / or welded connections: design with overstrength for bolted connections: bearing stresses should be more critical than shear in bolt weld net-section Die Dissipationsfähigkeit einzelner Elemente ergibt das Dissipative Behaviour eines Bauwerks. Bearing resistance Bolts

39 Seismic Design of Steel Structures
Codes: EN 1998 (or: DIN 4149 = EN 1998 simplified) codes for steel structures and materials Seismic Design: Make use of dissipation, assuming behaviour factor q (Reduction of „elastic“ action) Application of capacity design e.g. for bolted connections: Rbolt > Rbearing > Rcross-section,pl > Eseismic/q for comparison: static design verification: (Rbolt , Rbearing , Rcross-section) > Ed Die Dissipationsfähigkeit einzelner Elemente ergibt das Dissipative Behaviour eines Bauwerks.

40

41 Flow chart for design (1)
Preliminary design of building (e.g. for wind loads) Result: dimensions, topology, permanent and variable loads Decision about conceivable dissipation mechanisms Combination of actions for earthquake Calculation using response spectrum Comparison of actions due to wind and earthquake yes No further checks Wind > Earthquake Possible behaviour factors (system topology, regularity) no yes ductility class L Exploitation < 150 % no Natural Ductility q = 1,5 Ductility class M or H (q >1,5) Selection of behaviour factor q = max. exploitation [%] / 100

42 Flow chart for design (2)
Selection of behaviour factor q = max. exploitation [%] / 100 Calculation using design spectrum Ed = Eelast / q member forces Check of degree of exploitation (dissipative members) usually max. exploitation ≈ 100 % min. exploitation ≈ 80 % Inverse degree of exploitation Ω = 1 / 0,80 = 1,25 global capacity design with g + q and 1,2 Ω Ed local capacity design (connection of dissipative elements)

43 Application Example: Reactor- and Heater Towers for a steel producing direct reduction plant in Indonesia

44

45

46

47

48 Assuming an Elastic system
atop atop = 0,5 … 1,0 g ag = 0,2 … 0,4 g Ground and Response Acceleration

49 Assuming an Elastic system
1 g horizontal =

50 Ductility: where to get it from?
not o.k. ! not o.k. ! buckling = failure

51 Ductility: where to get it from?
Buckling o.k. o.k. ! o.k. !

52 First possible solution

53 Example: Shear –Link in Eccentrically Braced Frame (EBF)
Dissipative Elements Vpl V Example: Shear –Link in Eccentrically Braced Frame (EBF)

54

55 Second possible solution
Vertical Shear links

56 Biggest possible ductility in shear Avoid flexural failure mode
Design of Shear Links Biggest possible ductility in shear Avoid flexural failure mode Web buckling should occur at large deformations only Ensure lateral stability of flanges

57

58 Calculate system again and diagonals for this load
Capacity Design: 2nd loop of calculation from shear link: Vpl Vpl * γRd Calculate system again with Vpl * γRd ! Design columns, beams and diagonals for this load

59 Spacing of stiffener plates, type of link
Plastic deformability θ= rad

60

61 Conclusions Design for Earthquake requires different way of thinking: verification of behaviour rather than verification of strength The behaviour of a structure under seismic loading is mainly determined by: Regularity – avoid extreme straining/ loading of certain members Redundancy – enable reserves of saftey Ductility – plastic deformations without premature failure Dissipation – from formation of cyclic plastic hystereses Quality and Control of Execution – too much of strength may be dangerous Die Dissipationsfähigkeit einzelner Elemente ergibt das Dissipative Behaviour eines Bauwerks.

62


Download ppt "Design of Steel and Composite-Structures for Seismic Loading – Safety Requirements, Concepts and Methods – Prof. Dr.-Ing. Ekkehard Fehling, University."

Similar presentations


Ads by Google