Presentation is loading. Please wait.

Presentation is loading. Please wait.

FM Series.

Similar presentations


Presentation on theme: "FM Series."β€” Presentation transcript:

1 FM Series

2 BAT Understand and write series using sigma notation
Series: Proof KUS objectives BAT Understand and write series using sigma notation BAT Generate sequences BAT Solve arithmetic series problems involving sigma notation 1 𝑛 π‘Ÿ = 𝑛 2 𝑛+1 1 𝑛 π‘Ÿ 2 = 𝑛 6 𝑛+1 (2𝑛+1) 1 𝑛 π‘Ÿ 3 = 𝑛 (𝑛+1) 2 Starter : Find π‘Ÿ=1 32 π‘Ÿ 2 = (65)=34320 π‘Ÿ=11 44 π‘Ÿ = π‘Ÿ=1 44 π‘Ÿ βˆ’ π‘Ÿ=1 10 π‘Ÿ = βˆ’ 10 2 (11)=891 π‘Ÿ= π‘Ÿ 3 = π‘Ÿ=1 30 π‘Ÿ 3 βˆ’ π‘Ÿ=1 12 π‘Ÿ 3 = βˆ’ =210141

3 Show that n2 + n – 1056 = 0 and find the value of n
π‘Ÿ=1 𝑛 π‘Ÿ = 528 W8 Given that Show that n2 + n – 1056 = 0 and find the value of n π‘Ÿ=1 𝑛 π‘Ÿ= 1 2 𝑛(𝑛+1)=528 ... β‡’ 𝑛 2 +π‘›βˆ’1056=0 β‡’ (π‘›βˆ’32)(𝑛+33)=0 β‡’ 𝑛=32, π‘›β‰ βˆ’33

4 Remember: and: sum of the first n natural numbers sum of the first
Notes: reminder 1 𝑛 4 =4𝑛 Remember: 1 𝑛 (π‘Žπ‘Ÿ+𝑏) =π‘Ž 1 𝑛 π‘Ÿ +𝑏𝑛 and: 1 𝑛 π‘Ÿ sum of the first n natural numbers = 1 2 𝑛(𝑛+1) 1 𝑛 π‘Ÿ 2 = 1 6 𝑛(𝑛+1)(2𝑛+1) sum of the first n squares is 1 𝑛 π‘Ÿ 3 = 1 4 𝑛 2 (𝑛+1 ) 2 sum of the first n cubes is

5 Similarly: Notes (cont) 1 𝑛 (2 π‘Ÿ 3 +3 π‘Ÿ 2 +4π‘Ÿ+5)=
1 𝑛 (2 π‘Ÿ π‘Ÿ 2 +4π‘Ÿ+5)= 2 1 𝑛 π‘Ÿ 𝑛 π‘Ÿ 𝑛 π‘Ÿ +5𝑛

6 1 𝑛 7π‘Ÿβˆ’4 =7 1 𝑛 π‘Ÿ βˆ’4(𝑛) =7 𝑛 2 (π‘›βˆ’1) βˆ’4(𝑛) = 𝑛 2 7𝑛+7βˆ’8 = 𝑛 2 7π‘›βˆ’1
WB9 algebra We might also derive a formula a) show that 1 𝑛 7π‘Ÿβˆ’4 = 𝑛 2 (7π‘›βˆ’1) 1 𝑛 7π‘Ÿβˆ’4 =7 1 𝑛 π‘Ÿ βˆ’4(𝑛) =7 𝑛 2 (π‘›βˆ’1) βˆ’4(𝑛) = 𝑛 2 7𝑛+7βˆ’8 = 𝑛 2 7π‘›βˆ’1

7 1 𝑛 π‘Ÿ 2 +2π‘Ÿβˆ’1 = 1 𝑛 π‘Ÿ 2 +2 1 𝑛 π‘Ÿ βˆ’π‘› = 1 6 𝑛(𝑛+1)(2𝑛+1)+2 1 2 𝑛(𝑛+1) βˆ’π‘›
WBx algebra We might also derive a formula b) Show that: 1 𝑛 ( π‘Ÿ 2 +2π‘Ÿβˆ’1) = 1 6 𝑛(2 𝑛 2 +9𝑛+1) 1 𝑛 π‘Ÿ = 𝑛 2 𝑛+1 1 𝑛 π‘Ÿ 2 = 𝑛 6 𝑛+1 (2𝑛+1) 1 𝑛 π‘Ÿ 3 = 𝑛 (𝑛+1) 2 1 𝑛 π‘Ÿ 2 +2π‘Ÿβˆ’1 = 1 𝑛 π‘Ÿ 𝑛 π‘Ÿ βˆ’π‘› = 1 6 𝑛(𝑛+1)(2𝑛+1) 𝑛(𝑛+1) βˆ’π‘› Here we look for common factors and do some β€˜fixing’ = 1 6 𝑛[(𝑛+1)(2𝑛+1)+6(𝑛+1)βˆ’6] = 1 6 𝑛(2 𝑛 2 +9𝑛+1)

8 WB10a algebra a) show that 1 2𝑛 π‘Ÿ 2 = 𝑛 6 (2𝑛+1)(7𝑛+1)
1 𝑛 π‘Ÿ = 𝑛 2 𝑛+1 1 𝑛 π‘Ÿ 2 = 𝑛 6 𝑛+1 (2𝑛+1) 1 𝑛 π‘Ÿ 3 = 𝑛 (𝑛+1) 2 𝑛+1 2𝑛 π‘Ÿ 2 = 1 2𝑛 π‘Ÿ 2 βˆ’ 1 𝑛 π‘Ÿ 2 = 2𝑛 6 (2𝑛+1)(4𝑛+1) βˆ’ 𝑛 6 (𝑛+1)(2𝑛+1) = 𝑛 6 (2𝑛+1) 2 4𝑛+1 βˆ’(𝑛+1) = 𝑛 6 (2𝑛+1)(7𝑛+1)

9 b) Prove that WB10b π‘Ÿ=5 2πΎβˆ’1 π‘Ÿ =2 𝐾 2 βˆ’πΎβˆ’10, 𝐾β‰₯3
π‘Ÿ=5 2πΎβˆ’1 π‘Ÿ =2 𝐾 2 βˆ’πΎβˆ’10, 𝐾β‰₯3 b) Prove that 1 𝑛 π‘Ÿ = 𝑛 2 𝑛+1 1 𝑛 π‘Ÿ 2 = 𝑛 6 𝑛+1 (2𝑛+1) 1 𝑛 π‘Ÿ 3 = 𝑛 (𝑛+1) 2 π‘Ÿ=5 2πΎβˆ’1 π‘Ÿ = π‘Ÿ=1 2πΎβˆ’1 π‘Ÿ βˆ’ π‘Ÿ=1 4 π‘Ÿ = (2πΎβˆ’1)(2𝐾) 2 βˆ’ (4)(5) 2 ...=2 𝐾 2 βˆ’πΎβˆ’10

10 𝑛+1 𝑛 π‘Ÿ 2 +π‘Ÿβˆ’2 = 1 𝑛 π‘Ÿ 2 βˆ’ 1 𝑛 π‘Ÿ βˆ’2n = 𝑛 6 (𝑛+1)(2𝑛+1) βˆ’ 𝑛 2 𝑛+1 βˆ’2𝑛
WB a) show that 1 𝑛 π‘Ÿ 2 +π‘Ÿβˆ’2 = 𝑛 3 (𝑛+4)(π‘›βˆ’1) b) hence, find the sum of the series …+418 1 𝑛 π‘Ÿ = 𝑛 2 𝑛+1 1 𝑛 π‘Ÿ 2 = 𝑛 6 𝑛+1 (2𝑛+1) 1 𝑛 π‘Ÿ 3 = 𝑛 (𝑛+1) 2 𝑛+1 𝑛 π‘Ÿ 2 +π‘Ÿβˆ’2 = 1 𝑛 π‘Ÿ 2 βˆ’ 1 𝑛 π‘Ÿ βˆ’2n = 𝑛 6 (𝑛+1)(2𝑛+1) βˆ’ 𝑛 2 𝑛+1 βˆ’2𝑛 = 𝑛 6 𝑛+1 2𝑛+1 βˆ’3 𝑛+1 βˆ’12 = 𝑛 𝑛 2 +6π‘›βˆ’8 = 𝑛 3 ( 𝑛 2 +3π‘›βˆ’4) = 𝑛 3 𝑛+4 π‘›βˆ’1 QED

11 WB 11b a) show that 1 𝑛 π‘Ÿ 2 +π‘Ÿβˆ’2 = 𝑛 3 (𝑛+4)(π‘›βˆ’1) b) hence, find the sum of the series …+418 …+418= π‘Ÿ 2 +π‘Ÿβˆ’2 = (24)(19) =3040

12 π‘Ž) π‘˜=1 2π‘›βˆ’1 π‘˜ = (2π‘›βˆ’1) 2 (2π‘›βˆ’1+1)= n(2nβˆ’1)
1 𝑛 π‘Ÿ = 𝑛 2 𝑛+1 1 𝑛 π‘Ÿ 2 = 𝑛 6 𝑛+1 (2𝑛+1) 1 𝑛 π‘Ÿ 3 = 𝑛 (𝑛+1) 2 WB a) Find π‘˜=1 2π‘›βˆ’1 π‘˜ b) Hence show that π‘˜=𝑛+1 2π‘›βˆ’1 π‘˜ = 3𝑛 2 π‘›βˆ’1 , 𝑛β‰₯2 π‘Ž) π‘˜=1 2π‘›βˆ’1 π‘˜ = (2π‘›βˆ’1) 2 (2π‘›βˆ’1+1)= n(2nβˆ’1) 𝑏) 𝑛+1 2π‘›βˆ’1 π‘˜ = 1 2π‘›βˆ’1 π‘˜ βˆ’ 1 𝑛 π‘˜ =𝑛 2π‘›βˆ’1 βˆ’ 𝑛 2 𝑛+1 = 3𝑛 π‘›βˆ’ 2 3 βˆ’ 3𝑛 2 𝑛 = 3𝑛 π‘›βˆ’ 2 3 βˆ’ 𝑛 3 βˆ’ 1 3 = 3𝑛 2 π‘›βˆ’ QED

13 π‘Ž) π‘Ÿ=1 𝑛 2 π‘Ÿ βˆ’ π‘Ÿ=1 𝑛 π‘Ÿ = 𝑛 2 2 𝑛 2 +1 βˆ’ 𝑛 2 (𝑛+1)
1 𝑛 π‘Ÿ = 𝑛 2 𝑛+1 1 𝑛 π‘Ÿ 2 = 𝑛 6 𝑛+1 (2𝑛+1) 1 𝑛 π‘Ÿ 3 = 𝑛 (𝑛+1) 2 WB a) show that π‘Ÿ=1 𝑛 2 π‘Ÿ βˆ’ π‘Ÿ=1 𝑛 π‘Ÿ = 𝑛( 𝑛 3 βˆ’1) b) Hence evaluate π‘Ÿ= π‘Ÿ π‘Ž) π‘Ÿ=1 𝑛 2 π‘Ÿ βˆ’ π‘Ÿ=1 𝑛 π‘Ÿ = 𝑛 𝑛 2 +1 βˆ’ 𝑛 2 (𝑛+1) = 𝑛 2 𝑛 3 +𝑛 βˆ’π‘› βˆ’1 = 𝑛( 𝑛 3 βˆ’1) 2 𝑏) π‘Ÿ= π‘Ÿ = π‘Ÿ βˆ’ 1 9 π‘Ÿ = 9( 9 3 βˆ’1) 2 βˆ’ 3( 3 3 βˆ’1) 2 =3237

14 WB 14 Given that 𝑒 π‘Ÿ =π‘Žπ‘Ÿ+𝑏 and π‘Ÿ=1 𝑛 𝑒 π‘Ÿ = 𝑛 2 7𝑛+1
π‘Ÿ=1 𝑛 π‘Žπ‘Ÿ+𝑏 =π‘Ž π‘Ÿ=1 𝑛 π‘Ÿ +𝑏𝑛 =π‘ŽΓ— 𝑛 2 𝑛+1 +𝑏𝑛 = 𝑛 2 π‘Žπ‘›+2𝑏𝑛+π‘Ž = 𝑛 2 7𝑛+1 Equating gives π‘Ž+2𝑏=7 and a=1 a=1, 𝑏=3

15 Crucial points 1. Check your results When you find a sum of the first n terms of a series, it is a good idea to substitute n = 1, and perhaps n = 2 as well, to check your result. 2. Look for common factors When using standard results, there can be quite a lot of algebra involved in simplifying the result. Make sure you take out any common factors first, as this makes the algebra a lot simpler. 3. Be careful when summing a constant term remember 1 𝑛 π‘˜ =π‘˜+π‘˜+π‘˜ π‘˜=π‘˜π‘›

16 KUS objectives BAT Understand and write series using sigma notation BAT Generate sequences BAT Solve arithmetic series problems involving sigma notation self-assess One thing learned is – One thing to improve is –

17 END


Download ppt "FM Series."

Similar presentations


Ads by Google