Presentation is loading. Please wait.

Presentation is loading. Please wait.

CorePure2 Chapter 6 :: Hyperbolic Functions

Similar presentations


Presentation on theme: "CorePure2 Chapter 6 :: Hyperbolic Functions"β€” Presentation transcript:

1 CorePure2 Chapter 6 :: Hyperbolic Functions
Last modified: 12th August 2018

2 www.drfrostmaths.com Everything is completely free. Why not register?
Register now to interactively practise questions on this topic, including past paper questions and extension questions (including MAT + UKMT). Teachers: you can create student accounts (or students can register themselves), to set work, monitor progress and even create worksheets. With questions by: Dashboard with points, trophies, notifications and student progress. Questions organised by topic, difficulty and past paper. Teaching videos with topic tests to check understanding.

3 Overview We will see the definition and purpose of hyperbolic functions such as sinh π‘₯ , cosh π‘₯ , their inverses, and how we can manipulate them, such as solving equations, differentiating and integrating. 1 :: Definition of hyperbolic functions and their sketches. 2 :: Inverse hyperbolic functions. β€œFind the exact value of: π‘‘π‘Žπ‘›β„Ž 𝑙𝑛 4 ” Prove that π‘Žπ‘Ÿπ‘π‘œπ‘ β„Ž π‘₯= ln π‘₯+ π‘₯ 2 βˆ’1 3 :: Hyperbolic Identities and Solving Equations 4 :: Differentiation Determine 𝑑 𝑑π‘₯ π‘Žπ‘Ÿπ‘ π‘–π‘›β„Ž π‘₯ Solve for all real π‘₯ 2 cosh 2 π‘₯ βˆ’ 5π‘ π‘–π‘›β„Ž π‘₯ =5 Teacher Note: This is pretty much all of the old FP3 Chapter 1 (Hyperbolic Functions), much of Chapter 3 (Differentiation) and much of Chapter 4 (Integration). In particular, Exercise 6E (integration) is extremely hefty, so you may wish to split over 2 lessons. The change to integration since FP3 is that some results, e.g sech 2 π‘₯ 𝑑π‘₯ have been dropped. 5 :: Integration Determine π‘₯+2 π‘₯ 2 𝑑π‘₯

4 Conic Sections The axis of the parabola is parallel to the side of the cone. In mathematics there are a number of different families of curves. These doing FP1 as their Further Maths option will encounter ellipses, parabolas and hyperbolas in Chapters 2 and Chapter 3 (β€œConic Sections I and II”). Each of these have different properties and their equations have different forms. It is possible to obtain these different types of curves by slicing a cone, hence β€œconic sections”.

5 Comparing circles and hyperbolas
! (Don’t make notes on this slide) You will cover Hyperbolas in FP1, but this will give some context for the eponymously named β€˜hyperbolic functions’ that we will explore in this chapter. Circles Hyperbolas Source: Wikipedia 1 π‘₯,𝑦 πœƒ 1 The β€˜simplest’ circle is a unit circle centred at the origin. Cartesian equation: 𝒙 𝟐 + π’š 𝟐 =𝟏 Parametric eqns (in terms of πœƒ): 𝒙=𝒄𝒐𝒔 𝜽 π’š=π’”π’Šπ’ 𝜽 The equivalent hyperbola (which crosses 𝒙-axis at (𝟏,𝟎) and βˆ’πŸ,𝟎 ) Cartesian equation: 𝒙 𝟐 βˆ’ π’š 𝟐 =𝟏 Parametric equations: 𝒙=𝒄𝒐𝒔𝒉 𝜽 π’š=π’”π’Šπ’π’‰ 𝜽 ? similar ? ? ? similar

6 What’s the point of hyperbolic functions?
Hyperbolic functions often result from differential equations (e.g. in mechanics), and we’ll see later in this module how we can use these functions in calculus. For example, we can consider forces acting on each point on a hanging piece of string. Solving the relevant differential equations, we end up with: π’š= 𝐜𝐨𝐬𝐑 𝒙 ? OMG modelling!

7 Equations for hyperbolic functions
Hyperbolic sine: sinh π‘₯ = 𝑒 π‘₯ βˆ’ 𝑒 βˆ’π‘₯ π‘₯βˆˆβ„ Hyperbolic cosine: cosh π‘₯ = 𝑒 π‘₯ + 𝑒 βˆ’π‘₯ π‘₯βˆˆβ„ Hyperbolic tangent: tanh = sinh π‘₯ cosh π‘₯ = 𝑒 2π‘₯ βˆ’1 𝑒 2π‘₯ π‘₯βˆˆβ„ Hyperbolic secant: sech π‘₯ = 1 cosh π‘₯ = 2 𝑒 π‘₯ + 𝑒 βˆ’π‘₯ π‘₯βˆˆβ„ Hyperbolic cosecant: cosech π‘₯ = 1 sinh π‘₯ = 2 𝑒 π‘₯ βˆ’ 𝑒 βˆ’π‘₯ π‘₯βˆˆβ„, π‘₯β‰ 0 Hyperbolic cotangent: coth π‘₯ = 1 tanh π‘₯ = 𝑒 2π‘₯ +1 𝑒 2π‘₯ βˆ’ π‘₯βˆˆβ„, π‘₯β‰ 0 ? Say as β€œshine” of π‘₯ ? Say as β€œcosh” Say as β€œtanch” ? ? Say as β€œsetch” ? ? ? ? Say as β€œcosetch” ? ? Say as β€œcoth”

8 Equations for hyperbolic functions
Calculate (using both your π‘ π‘–π‘›β„Ž button and using the formula) 𝐬𝐒𝐧𝐑 πŸ‘ =𝟏𝟎.𝟎𝟐 Write in terms of 𝑒: 𝐜𝐨𝐬𝐞𝐜𝐑 πŸ‘ = 𝟏 𝐬𝐒𝐧𝐑 πŸ‘ = 𝟐 𝒆 πŸ‘ βˆ’ 𝒆 βˆ’πŸ‘ = 𝒆 πŸπ’π’πŸ’ βˆ’πŸ 𝒆 πŸπ’π’πŸ’ +𝟏 = 𝒆 𝒍𝒏 πŸ’ 𝟐 βˆ’πŸ 𝒆 𝒍𝒏 πŸ’ 𝟐 +𝟏 = πŸπŸ”βˆ’πŸ πŸπŸ”+𝟏 = πŸπŸ“ πŸπŸ• Solve π‘ π‘–π‘›β„Ž π‘₯=5 𝒆 𝒙 βˆ’ 𝒆 βˆ’π’™ 𝟐 =πŸ“ β‡’ 𝒆 𝒙 βˆ’ 𝒆 βˆ’π’™ =𝟏𝟎 𝒆 πŸπ’™ βˆ’πŸπŸŽ 𝒆 𝒙 βˆ’πŸ=𝟎 𝒆 𝒙 = 𝟏𝟎± 𝟏𝟎𝟎+πŸ’ 𝟐 =𝟏𝟎.πŸŽπŸ—πŸ— 𝒐𝒓 βˆ’πŸŽ.πŸŽπŸ—πŸ— 𝒙=𝟐.πŸ‘πŸ ? Froculator Tip: Press the β€˜hyp’ button. Q ? Q ? Find the exact value of: 𝒕𝒂𝒏𝒉 𝒍𝒏 πŸ’ Q ?

9 Click here to sketch 𝑦= sinh π‘₯
Sketching hyperbolic functions 𝑦 𝑦 𝑦= 𝑒 π‘₯ 𝑦= 𝑒 βˆ’π‘₯ π‘₯ π‘₯ 𝑦=βˆ’ 𝑒 π‘₯ 𝑦=βˆ’ 𝑒 βˆ’π‘₯ sinh⁑(π‘₯) is known as an odd function because 𝑓 βˆ’π‘₯ =βˆ’π‘“(π‘₯). Can you think of other odd functions? 𝒇 𝒙 = 𝐬𝐒𝐧 𝒙 , 𝒇 𝒙 = 𝒙 πŸ‘ 𝑦 ? We can see we have the average of 𝑒 π‘₯ and βˆ’ 𝑒 βˆ’π‘₯ 𝑦= sinh π‘₯ Click here to sketch 𝑦= sinh π‘₯ π‘₯ As π‘₯β†’βˆž, 𝑒 βˆ’π‘₯ β†’0 ∴ sinh π‘₯ β†’ 1 2 𝑒 π‘₯ ? sinh π‘₯ = 𝑒 π‘₯ βˆ’ 𝑒 βˆ’π‘₯ 2 ?

10 Click here to sketch 𝑦= cosh π‘₯
Sketching hyperbolic functions 𝑦 𝑦 𝑦= 𝑒 π‘₯ 𝑦= 𝑒 βˆ’π‘₯ π‘₯ π‘₯ 𝑦=βˆ’ 𝑒 π‘₯ 𝑦=βˆ’ 𝑒 βˆ’π‘₯ cosh⁑(π‘₯) is known as an even function because 𝑓 βˆ’π‘₯ =𝑓(π‘₯). Can you think of other even functions? 𝒇 𝒙 = 𝐜𝐨𝐬 𝒙 , 𝒇 𝒙 = 𝒙 𝟐 𝑦 ? 𝑦= cosh π‘₯ Click here to sketch 𝑦= cosh π‘₯ π‘₯ As π‘₯β†’βˆž, cosh π‘₯ β†’ 1 2 𝑒 π‘₯ ? cosh π‘₯ = 𝑒 π‘₯ + 𝑒 βˆ’π‘₯ 2

11 Click to sketch 𝑦= tanh π‘₯
Sketching hyperbolic functions tanh π‘₯ = sinh π‘₯ cosh π‘₯ To sketch 𝑦=tanh π‘₯ , consider the usual features when you sketch a graph. When π‘₯=0, π’š= 𝐬𝐒𝐧𝐑 𝟎 𝐜𝐨𝐬𝐑 𝟎 = 𝟎 𝟏 =𝟎 As π‘₯β†’βˆž, 𝐭𝐚𝐧𝐑 𝒙 β†’ 𝟏 𝟐 𝒆 𝒙 𝟏 𝟐 𝒆 𝒙 =𝟏 As π‘₯β†’βˆ’βˆž, 𝐭𝐚𝐧𝐑 𝒙 β†’ βˆ’ 𝟏 𝟐 𝒆 βˆ’π’™ 𝟏 𝟐 𝒆 βˆ’π’™ =βˆ’πŸ ? ? ? 𝑦 𝑦=1 Click to sketch 𝑦= tanh π‘₯ π‘₯ 𝑦=βˆ’1

12 Test Your Understanding
Sketch the graph of 𝑦= sech π‘₯ π‘₯ 𝑦= cosh π‘₯ 1 ? π‘₯ 𝑦 1 𝑦= sech π‘₯ ? We simply consider the reciprocal of each of the 𝑦 values.

13 Exercise 6A Pearson Core Pure Year 2 Pages

14 Inverse Hyperbolic Functions
As you might expect, each hyperbolic function has an inverse. Note that lack of β€˜c’ (e.g. arsinh not arcsinh). 𝑦 Click to sketch 𝑦= sinh π‘₯ π‘₯ Click to sketch 𝑦= arsinh π‘₯ All of them: π’š=π’‚π’“π’”π’Šπ’π’‰ 𝒙, π’š=𝒂𝒓𝒄𝒐𝒔𝒉 𝒙, π’š=𝒂𝒓𝒕𝒂𝒏𝒉 𝒙 π’š=𝒂𝒓𝒔𝒆𝒄𝒉 𝒙, π’š=𝒂𝒓𝒄𝒐𝒔𝒆𝒄𝒉 𝒙, π’š=𝒂𝒓𝒄𝒐𝒕𝒉 𝒙

15 Inverse Hyperbolic Functions
Why is there a problem when finding the inverse of 𝑓 π‘₯ = cosh π‘₯ ? 𝑦 Recall from Pure Year 2 that functions only have an inverse if they are one-to-one. 𝑓 π‘₯ = cosh π‘₯ is many-to-one if the domain is unrestricted, which would become one-to-many. x 𝑦=π‘π‘œπ‘ β„Ž π‘₯ 𝑦=π‘Žπ‘Ÿπ‘π‘œπ‘ β„Ž π‘₯ π‘₯ If we restrict the domain to π‘₯β‰₯0, then it becomes one-to-one, and we can reflect in 𝑦=π‘₯ as before.

16 Inverse Hyperbolic Functions
Given that hyperbolic functions can be written in terms of 𝑒, naturally (obscure pun intended) inverse hyperbolic can be expressed in terms of 𝑙𝑛. Prove that π‘Žπ‘Ÿπ‘ π‘–π‘›β„Ž π‘₯= ln π‘₯+ π‘₯ 2 +1 ? π’š=π’‚π’“π’”π’Šπ’π’‰ 𝒙 𝒙= 𝐬𝐒𝐧𝐑 π’š 𝒙= 𝒆 π’š βˆ’ 𝒆 βˆ’π’š 𝟐 𝒆 π’š βˆ’ 𝒆 βˆ’π’š =πŸπ’™ 𝒆 πŸπ’š βˆ’πŸπ’™ 𝒆 π’š βˆ’πŸ=𝟎 𝒂=βˆ’πŸ, 𝒃=βˆ’πŸπ’™, 𝒄=βˆ’πŸ 𝒆 π’š = πŸπ’™Β± πŸ’ 𝒙 𝟐 +πŸ’ 𝟐 =𝒙± 𝒙 𝟐 +𝟏 However since 𝒙 𝟐 +𝟏 >𝒙, can only use positive case as 𝒆 π’š is positive. π’š= π₯𝐧 𝒙+ 𝒙 𝟐 +𝟏 π’‚π’“π’”π’Šπ’π’‰ 𝒙= π₯𝐧 𝒙+ 𝒙 𝟐 +𝟏 ? ?

17 Test Your Understanding
Prove that π‘Žπ‘Ÿπ‘π‘œπ‘ β„Ž π‘₯= ln π‘₯+ π‘₯ 2 βˆ’1 , π‘₯β‰₯1 Proof that 𝒍𝒏⁑(π’™βˆ’ 𝒙 𝟐 βˆ’πŸ ) is negative: π‘₯βˆ’ π‘₯ 2 βˆ’1 π‘₯+ π‘₯ 2 βˆ’1 =1 π‘₯βˆ’ π‘₯ 2 βˆ’1 = 1 π‘₯+ π‘₯ 2 βˆ’1 Taking logs of both sides: ln π‘₯βˆ’ π‘₯ 2 βˆ’1 =βˆ’ ln π‘₯+ π‘₯ 2 βˆ’1 Since π‘₯β‰₯1, π‘₯+ π‘₯ 2 βˆ’1 β‰₯1, thus RHS is negative. ? π’š=𝒂𝒓𝒄𝒐𝒔𝒉 𝒙 𝒙= 𝐜𝐨𝐬𝐑 π’š 𝒙= 𝒆 π’š + 𝒆 βˆ’π’š 𝟐 𝒆 π’š + 𝒆 βˆ’π’š =πŸπ’™ 𝒆 πŸπ’š βˆ’πŸπ’™ 𝒆 π’š +𝟏=𝟎 𝒂=βˆ’πŸ, 𝒃=βˆ’πŸπ’™, 𝒄=+𝟏 𝒆 π’š = πŸπ’™Β± πŸ’ 𝒙 𝟐 βˆ’πŸ’ 𝟐 =𝒙± 𝒙 𝟐 βˆ’πŸ However this time, both + and βˆ’ cases are possible. We can prove that ln⁑(π‘₯βˆ’ π‘₯ 2 βˆ’1 ) gives a negative value. Show > But recall from the graph that we only include positive values of 𝑦 in the function to avoid it being one-to-many. Thus π‘Žπ‘Ÿπ‘π‘œπ‘ β„Ž π‘₯= ln π‘₯+ π‘₯ 2 βˆ’1 only. 𝑦=π‘Žπ‘Ÿπ‘π‘œπ‘ β„Ž π‘₯

18 Summary so Far π‘Žπ‘Ÿπ‘ π‘–π‘›β„Ž π‘₯= ln π‘₯+ π‘₯ π‘Žπ‘Ÿπ‘π‘œπ‘ β„Ž π‘₯= ln π‘₯+ π‘₯ 2 βˆ’1 , π‘₯β‰₯1 π‘Žπ‘Ÿπ‘‘π‘Žπ‘›β„Ž π‘₯= 1 2 ln 1+π‘₯ 1βˆ’π‘₯ , π‘₯ <1 Hyperbolic Domain Sketch Inverse Hyperbolic 𝑦= sinh π‘₯ π‘₯βˆˆβ„ 𝑦=π‘Žπ‘Ÿπ‘ π‘–π‘›β„Ž π‘₯ 𝑦= cosh π‘₯ π‘₯β‰₯0 𝑦=π‘Žπ‘Ÿπ‘π‘œπ‘ β„Ž π‘₯ π‘₯β‰₯1 𝑦= tanh π‘₯ 𝑦=π‘Žπ‘Ÿπ‘‘π‘Žπ‘›β„Ž π‘₯ π‘₯ <1 𝑦= sech π‘₯ 𝑦=π‘Žπ‘Ÿπ‘ π‘’π‘β„Ž π‘₯ 0<π‘₯≀1 𝑦=π‘π‘œπ‘ π‘’π‘β„Ž π‘₯ π‘₯β‰ 0 𝑦=π‘Žπ‘Ÿπ‘π‘œπ‘ π‘’π‘β„Ž π‘₯ 𝑦= coth π‘₯ 𝑦= arcoth π‘₯ π‘₯ >1 ? ? ? ? 1 1 ? 1 ? -1 ? ? 1 ? ? ? ? 1 -1

19 Exercise 6B Pearson Core Pure Year 2 Pages

20 Hyperbolic Identities
From Pure Year 1 we know that sin 2 π‘₯ + cos 2 π‘₯ =1. Are there similar identities for hyperbolic functions? Use the definitions of π‘ π‘–π‘›β„Ž and π‘π‘œπ‘ β„Ž to prove that… ? 𝐜𝐨𝐬𝐑 𝟐 𝒙 βˆ’ 𝐬𝐒𝐧𝐑 𝟐 𝒙 =𝟏 ? 𝒔𝒆𝒄 𝒉 𝟐 𝒙=πŸβˆ’π’•π’‚π’ 𝒉 𝟐 𝒙 ? 𝒄𝒐𝒔𝒆𝒄 𝒉 𝟐 𝒙=𝒄𝒐𝒕 𝒉 𝟐 π’™βˆ’πŸ

21 Hyperbolic Identities
We can similar prove that: Similar to sin⁑(𝐴+𝐡) identity. π’”π’Šπ’π’‰ 𝑨±𝑩 =π’”π’Šπ’π’‰ 𝑨 𝒄𝒐𝒔𝒉 𝑩±𝒄𝒐𝒔𝒉 𝑨 π’”π’Šπ’π’‰ 𝑩 𝒄𝒐𝒔𝒉 𝑨±𝑩 =𝒄𝒐𝒔𝒉 𝑨 𝒄𝒐𝒔𝒉 π‘©Β±π’”π’Šπ’π’‰ 𝑨 π’”π’Šπ’π’‰ 𝑩 However this is Β± not βˆ“, unlike in cos⁑(𝐴+𝐡) Prove that: 𝒕𝒂𝒏𝒉 𝑨±𝑩 = π’”π’Šπ’π’‰ 𝒙 𝒄𝒐𝒔𝒉 𝒙 = 𝒕𝒂𝒏𝒉 𝑨+𝒕𝒂𝒏𝒉 𝑩 𝟏+𝒕𝒂𝒏𝒉 𝑨 𝒕𝒂𝒏𝒉 𝑩 Notice this is + rather than - .

22 Osborn’s Rule We can get these identities from the normal sin/cos ones by: Osborn’s Rule: Replacing π‘ π‘–π‘›β†’π‘ π‘–π‘›β„Ž and π‘π‘œπ‘ β†’π‘π‘œπ‘ β„Ž Negate any explicit or implied product of two sines. sin 𝐴 sin 𝐡 β†’βˆ’ sinh 𝐴 sinh 𝐡 tan 2 𝐴 β†’βˆ’ tanh 2 𝐴 ? ? Since tan 2 𝐴 = sin 2 𝐴 cos 2 𝐴 ? π‘π‘œπ‘ 2𝐴=2 cos 2 𝐴 βˆ’1 β†’ 𝐜𝐨𝐬𝐑 πŸπ‘¨ =𝟐𝐜𝐨𝐬 𝒉 𝟐 π‘¨βˆ’πŸ tan π΄βˆ’π΅ = tan 𝐴 βˆ’ tan 𝐡 1+ tan 𝐴 tan 𝐡 β†’ 𝐭𝐚𝐧𝐑 𝑨 βˆ’ 𝐭𝐚𝐧𝐑 𝑩 πŸβˆ’ 𝐭𝐚𝐧𝐑 𝑨 𝐭𝐚𝐧𝐑 𝑩 ?

23 Solving Equations Either use hyperbolic identities or basic definitions of hyperbolic functions. Solve for all real π‘₯ 6 sinh π‘₯ βˆ’2 cosh π‘₯ =7 Solve for all real π‘₯ 2 cosh 2 π‘₯ βˆ’ 5π‘ π‘–π‘›β„Ž π‘₯ =5 ? ? Using cosh 2 π‘₯ βˆ’sin β„Ž 2 π‘₯=1 2 1+ sinh 2 π‘₯ βˆ’5 sinh π‘₯ =5 2 sinh π‘₯ +1 sinh π‘₯ βˆ’3 =0 sinh π‘₯ =βˆ’ 1 2 , sinh π‘₯ =3 π‘₯=π‘Žπ‘Ÿπ‘ π‘–π‘›β„Ž βˆ’ 1 2 , π‘₯=π‘Žπ‘Ÿπ‘ π‘–π‘›β„Ž 3 π‘₯= ln βˆ’ , π‘₯= ln 6 𝑒 π‘₯ βˆ’ 𝑒 βˆ’π‘₯ 2 βˆ’2 𝑒 π‘₯ + 𝑒 βˆ’π‘₯ 2 =7 … 2 𝑒 π‘₯ +1 𝑒 π‘₯ βˆ’4 =0 π‘₯= ln 4

24 Further Examples Pure Year 1 one: If cos π‘₯ = 3 5 , find sin π‘₯ . ? sin 2 π‘₯ + cos 2 π‘₯ =1 sin π‘₯ = 1βˆ’ = 4 5 ? If sinh π‘₯ = 3 4 , find the exact value of: cosh π‘₯ tanh π‘₯ sinh 2π‘₯ cosh 2 π‘₯ βˆ’ sinh 2 π‘₯ =1 cosh π‘₯ = = tanh π‘₯ = sinh π‘₯ cosh π‘₯ = sinh 2π‘₯ =2 sinh π‘₯ cosh π‘₯ = 15 8 ? ?

25 Test Your Understanding
? ?

26 Exercise 6C Pearson Core Pure Year 2 Pages ?

27 Differentiating hyperbolic functions
𝑑 𝑑π‘₯ sinh π‘₯ = cosh π‘₯ 𝑑 𝑑π‘₯ cosh π‘₯ = sinh π‘₯ 𝑑 𝑑π‘₯ tanh π‘₯ = sech 2 π‘₯ 𝑑 𝑑π‘₯ coth π‘₯ =βˆ’π‘π‘œπ‘ π‘’π‘ β„Ž 2 π‘₯ Important Memorisation Tip: They’re all the same as non-hyperbolic results, other than that π‘π‘œπ‘ β„Ž is not negated and sech π‘₯ becomes βˆ’ sech π‘₯ tanβ„Ž π‘₯ (i.e. is negated). Prove that 𝑑 𝑑π‘₯ sinh π‘₯ = cosh π‘₯ ? sinh π‘₯ = 𝑒 π‘₯ βˆ’ 𝑒 βˆ’π‘₯ 2 𝑑 𝑑π‘₯ sinh π‘₯ = 𝑒 π‘₯ + 𝑒 βˆ’π‘₯ 2 = cosh π‘₯

28 Test Your Understanding
Hint: Did someone say chain rule? ?

29 Inverse Hyperbolic Functions
Proof 𝑑 𝑑π‘₯ arsinh π‘₯ = 1 π‘₯ 𝑑 𝑑π‘₯ arcosh π‘₯ = 1 π‘₯ 2 βˆ’1 𝑑 𝑑π‘₯ artanh π‘₯ = 1 1βˆ’ π‘₯ 2 𝑦=π‘Žπ‘Ÿπ‘ π‘–π‘›β„Ž π‘₯ sinh 𝑦 =π‘₯ 𝑑π‘₯ 𝑑𝑦 = cosh 𝑦 𝑑π‘₯ 𝑑𝑦 = sinh 2 𝑦 = π‘₯ 𝑑𝑦 𝑑π‘₯ = 1 π‘₯ 2 +1 ? ? ? ? Examples Given that 𝑦= π‘Žπ‘Ÿπ‘π‘œπ‘ β„Ž π‘₯ 2 prove that π‘₯ 2 βˆ’1 𝑑𝑦 𝑑π‘₯ 2 =4𝑦 Find 𝑑 𝑑π‘₯ π‘Žπ‘Ÿπ‘‘π‘Žπ‘›β„Ž 3π‘₯ By chain rule: 𝒅 𝒅𝒙 𝒂𝒓𝒕𝒂𝒏𝒉 πŸ‘π’™ = 𝟏 πŸβˆ’ πŸ‘π’™ 𝟐 Γ—πŸ‘ = πŸ‘ πŸβˆ’πŸ— 𝒙 𝟐 π’…π’š 𝒅𝒙 =𝟐 𝒂𝒓𝒄𝒐𝒔𝒉 𝒙 𝟏 𝒙 𝟐 βˆ’πŸ 𝒙 𝟐 βˆ’πŸ π’…π’š 𝒅𝒙 =𝟐 𝒂𝒓𝒄𝒐𝒔𝒉 𝒙 𝒙 𝟐 βˆ’πŸ π’…π’š 𝒅𝒙 𝟐 =πŸ’ 𝒂𝒓𝒄𝒐𝒔𝒉 𝒙 𝟐 𝒙 𝟐 βˆ’πŸ π’…π’š 𝒅𝒙 𝟐 =πŸ’π’š ? ?

30 Test Yarrr Understanding
? ? ?

31 Using Maclaurin expansions for approximations
[Textbook] (a) Show that 𝑑 𝑑π‘₯ π‘Žπ‘Ÿπ‘ π‘–π‘›β„Ž π‘₯ = π‘₯ [We did this earlier] (b) Find the first two non-zero terms of the series expansion of π‘Žπ‘Ÿπ‘ π‘–π‘›β„Ž π‘₯. The general form for the series expansion of π‘Žπ‘Ÿπ‘ π‘–π‘›β„Ž π‘₯ is given by π‘Žπ‘Ÿπ‘ π‘–π‘›β„Ž π‘₯= π‘Ÿ=0 ∞ βˆ’1 𝑛 2𝑛 ! 2 2𝑛 𝑛! π‘₯ 2𝑛+1 2𝑛+1 (c) Find, in simplest terms, the coefficient of π‘₯ 5 . (d) Use your approximation up to and including the term in π‘₯ 5 to find an approximate value for π‘Žπ‘Ÿπ‘ π‘–π‘›β„Ž 0.5. (e) Calculate the percentage error in using this approximation. b ? Need to use a Maclaurin expansion. 𝑓 π‘₯ =π‘Žπ‘Ÿπ‘ π‘–π‘›β„Ž π‘₯ β‡’ 𝑓 0 =0 𝑓 β€² π‘₯ = 1+ π‘₯ 2 βˆ’ β‡’ 𝑓 β€² 0 =1 𝑓 β€²β€² π‘₯ =βˆ’π‘₯ 1+ π‘₯ 2 βˆ’ β‡’ 𝑓 β€²β€² 0 =0 𝑓 β€²β€²β€² π‘₯ = 2 π‘₯ 2 βˆ’ π‘₯ β‡’ 𝑓 β€²β€²β€² 0 =βˆ’1 Maclaurin expansion: 𝑓 π‘₯ =𝑓 0 + 𝑓 β€² 0 1! π‘₯+ 𝑓 β€²β€² 0 2! π‘₯ 2 + 𝑓 β€²β€²β€² 0 3! π‘₯ 3 +… βˆ΄π‘Žπ‘Ÿπ‘ π‘–π‘›β„Ž π‘₯β‰ˆπ‘₯βˆ’ π‘₯ 3 3! =π‘₯βˆ’ 1 6 π‘₯ 3 π‘₯ 5 term will occur when 𝑛=2 β‡’ βˆ’1 2 4! ! π‘₯ 5 5 = π‘₯ 5 Coefficient is 3 40 d ? π‘Žπ‘Ÿπ‘ π‘–π‘›β„Ž 0.5β‰ˆ0.5βˆ’ = % error = βˆ’π‘Žπ‘Ÿπ‘ π‘–π‘›β„Ž 0.5 π‘Žπ‘Ÿπ‘ π‘–π‘›β„Ž 0.5 Γ—100 =0.062% (3dp) Need to keep going until we have two non-zero terms for the Maclaurin expansion. e ? c ?

32 Exercise 6D Pearson Core Pure Year 2 Pages

33 Standard Integrals Same as non-hyperbolic version? sinh π‘₯ 𝑑π‘₯ = cosh π‘₯ +𝐢 cosh π‘₯ 𝑑π‘₯ = sinh π‘₯ +𝐢 sech 2 π‘₯ 𝑑π‘₯ = tanh π‘₯ +𝐢 cosech 2 π‘₯ 𝑑π‘₯ = βˆ’coth π‘₯ +𝐢 sech π‘₯ tanh π‘₯ 𝑑π‘₯ = βˆ’ sech π‘₯ +𝐢 cosech π‘₯ coth π‘₯ 𝑑π‘₯ = βˆ’cosech π‘₯ +𝐢 βˆ’ π‘₯ 2 𝑑π‘₯ = arcsin π‘₯ +𝐢, π‘₯ < π‘₯ 2 𝑑π‘₯ = arctan π‘₯ +𝐢 π‘₯ 2 𝑑π‘₯ = arcsinβ„Ž π‘₯ +𝐢 π‘₯ 2 βˆ’1 𝑑π‘₯ = arccosh π‘₯ +𝐢, π‘₯>1 ?  ? οƒΌ ? οƒΌ Not in this chapter but worth briefly mentioning. ? οƒΌ Not in formula booklet. ?  οƒΌ ? ? Was covered in Chapter 3. ? ? ?

34 Click only if you’ve forgotten them.
Quickfire Examples – Do From Memory! Recall that: 𝒇 β€² 𝒂𝒙+𝒃 𝒅𝒙 = 𝟏 𝒂 𝒇 𝒂𝒙+𝒃 +π‘ͺ e.g. 𝑒 3π‘₯+2 𝑑π‘₯ = 1 3 𝑒 3π‘₯+2 cosh 4π‘₯βˆ’1 𝑑π‘₯ = 𝟏 πŸ’ 𝐬𝐒𝐧𝐑 πŸ’π’™βˆ’πŸ +π‘ͺ π‘ π‘–π‘›β„Ž π‘₯ 𝑑π‘₯= πŸ‘ 𝟐 𝐜𝐨𝐬𝐑 𝟐 πŸ‘ 𝒙 +π‘ͺ π‘₯ 2 𝑑π‘₯ =πŸ‘ π’‚π’“π’”π’Šπ’π’‰ 𝒙 π‘₯ 2 βˆ’1 𝑑π‘₯ =πŸ’ 𝒂𝒓𝒄𝒐𝒔𝒉 𝒙 π‘ π‘–π‘›β„Ž 3π‘₯ 𝑑π‘₯= 𝟏 πŸ‘ 𝐜𝐨𝐬𝐑 πŸ‘π’™ +π‘ͺ π‘₯ 2 βˆ’1 𝑑π‘₯ =𝟏𝟎 𝒂𝒓𝒄𝒐𝒔𝒉 𝒙 π‘₯ 2 𝑑π‘₯ =𝟐 π’‚π’“π’”π’Šπ’π’‰ 𝒙 ? ? ? ? ? ? Click only if you’ve forgotten them. sinh π‘₯ 𝑑π‘₯ = cosh π‘₯ +𝐢 cosh π‘₯ 𝑑π‘₯ = sinh π‘₯ +𝐢 βˆ’ π‘₯ 2 𝑑π‘₯ = arcsin π‘₯ +𝐢, π‘₯ < π‘₯ 2 𝑑π‘₯ = arctan π‘₯ +𝐢 π‘₯ 2 𝑑π‘₯ = arcsinβ„Ž π‘₯ +𝐢 π‘₯ 2 βˆ’1 𝑑π‘₯ = arccosh π‘₯ +𝐢, π‘₯>1 ? ?

35 Further Example ? [Textbook] 2+5π‘₯ π‘₯ 2 +1 𝑑π‘₯
Integration Strategy Recap: If multiple terms in numerator, split fraction. 2+5π‘₯ π‘₯ 𝑑π‘₯ = π‘₯ 𝑑π‘₯ π‘₯ π‘₯ 𝑑π‘₯ = π‘₯ 𝑑π‘₯ + 5π‘₯ π‘₯ 𝑑π‘₯ =2 π‘Žπ‘Ÿπ‘ π‘–π‘›β„Ž π‘₯ π‘₯ 2 +𝑐 sinh π‘₯ 𝑑π‘₯ = cosh π‘₯ +𝐢 cosh π‘₯ 𝑑π‘₯ = sinh π‘₯ +𝐢 π‘₯ 2 𝑑π‘₯ = arcsinβ„Ž π‘₯ +𝐢 π‘₯ 2 βˆ’1 𝑑π‘₯ = arccosh π‘₯ +𝐢, π‘₯>1

36 Integrating when not quite so standard
cosh 5 2π‘₯ sinh 2π‘₯ 𝑑π‘₯ In the past we’ve integrated expressions of the form sin 𝑛 π‘₯ cos π‘₯ 𝑑π‘₯ and cos 𝑛 π‘₯ sin π‘₯ 𝑑π‘₯ by the β€œconsider and scale” method. (Using Method 1) Try π’š= 𝐜𝐨𝐬𝐑 πŸ” πŸπ’™ π’…π’š 𝒅𝒙 =πŸ” 𝐜𝐨𝐬𝐑 πŸ“ πŸπ’™ Γ—πŸπ’”π’Šπ’π’‰ πŸπ’™ =𝟏𝟐 𝐜𝐨𝐬𝐑 πŸ“ πŸπ’™ π’”π’Šπ’π’‰ πŸπ’™ ∴ 𝒄𝒐𝒔𝒉 πŸ“ πŸπ’™ π’”π’Šπ’π’‰ πŸπ’™ 𝒅𝒙 = 𝟏 𝟏𝟐 𝐜𝐨𝐬𝐑 πŸ” πŸπ’™ +π‘ͺ ? tanh π‘₯ 𝑑π‘₯ ? = sinh π‘₯ cosh π‘₯ 𝑑π‘₯ = ln cosh π‘₯ +𝐢 Use the same method for integrating tan π‘₯ , i.e. expressing first as a division. Note that because π‘π‘œπ‘ β„Ž differentiates to positive π‘ π‘–π‘›β„Ž, unlike the non-hyperbolic version, we don’t have the minus.

37 Using Identities ? ? cosh 2 3π‘₯ 𝑑π‘₯
Use double angle formulae for cos 2𝐴 = cosh 6π‘₯ 𝑑π‘₯ = 1 2 π‘₯ sinh 6π‘₯ +𝐢 sinh 3 π‘₯ 𝑑π‘₯ ? = sinh 2 π‘₯ sinh π‘₯ 𝑑π‘₯ = cosh 2 π‘₯ βˆ’1 sinh π‘₯ 𝑑π‘₯ = cosh 2 π‘₯ sinh π‘₯ βˆ’ sinh π‘₯ 𝑑π‘₯ = cosh 3 π‘₯ βˆ’ cosh π‘₯ +𝐢 Use this approach in general for small odd powers of sinh and cosh.

38 When that doesn’t work…
Sometimes there are techniques which work on non-hyperbolic trig functions but doesn’t work on hyperbolic ones. Just first replace any hyperbolic functions with their definition. Find 𝑒 2π‘₯ sinh π‘₯ 𝑑π‘₯ Find sech π‘₯ 𝑑π‘₯ ? ? 𝑒 2π‘₯ sinh π‘₯ 𝑑π‘₯ = 𝑒 2π‘₯ 𝑒 π‘₯ βˆ’ 𝑒 βˆ’π‘₯ 2 = 𝑒 3π‘₯ βˆ’ 𝑒 π‘₯ 𝑑π‘₯ = 𝑒 3π‘₯ βˆ’3 𝑒 π‘₯ +𝐢 = 𝑒 π‘₯ + 𝑒 βˆ’π‘₯ 𝑑π‘₯ = 2 𝑒 π‘₯ 𝑒 2π‘₯ +1 𝑑π‘₯ Use the substitution 𝑒= 𝑒 π‘₯ 𝑑𝑒 𝑑π‘₯ = 𝑒 π‘₯ βˆ΄π‘‘π‘’= 𝑒 π‘₯ 𝑑π‘₯ 2 𝑒 π‘₯ 𝑒 2π‘₯ +1 𝑑π‘₯= 𝑒 2 +1 𝑑𝑒 =2 arctan 𝑒 +𝐢 =2 arctan 𝑒 π‘₯ +𝐢 (Integration by parts DOES also work, but requires a significantly greater amount of working!) (Fro Exam Note: This very question appeared FP3(Old) June 2014, except involving definite integration)

39 Dealing with 1/ π‘Ž 2 + π‘₯ 2 , 1/ π‘₯ 2 βˆ’ π‘Ž 2 , ….
sin 2 πœƒ + cos 2 πœƒ =1 1+ tan 2 πœƒ = sec 2 πœƒ 1+ sinh 2 𝑒 = cosh 2 𝑒 Sensible substitution and why? 1 π‘Ž 2 + π‘₯ 2 𝑑π‘₯ π‘₯=π‘Ž sinh 𝑒 tan wouldn’t work as well this time because the denominator would simplify to π‘Ž sec 𝑒 , but we’d be multiplying by π‘Ž sec 2 πœƒ , meaning not all the secs would cancel. With sinh 𝑒 the two cosh 𝑒 ’s obtained would fully cancel. ? 1 π‘₯ 2 βˆ’ π‘Ž 2 𝑑π‘₯ ? π‘₯=π‘Ž cosh 𝑒 Show that π‘₯ 2 βˆ’ π‘Ž 2 𝑑π‘₯ =π‘Žπ‘Ÿπ‘π‘œπ‘ β„Ž π‘₯ π‘Ž +𝑐 ! 1 π‘Ž 2 + π‘₯ 2 𝑑π‘₯ =π‘Žπ‘Ÿπ‘ π‘–π‘›β„Ž π‘₯ π‘Ž +𝑐 1 π‘₯ 2 βˆ’ π‘Ž 2 𝑑π‘₯ =π‘Žπ‘Ÿπ‘π‘œπ‘ β„Ž π‘₯ π‘Ž +𝑐, π‘₯>π‘Ž ? Let π‘₯=π‘Ž cosh 𝑒 β‡’ 𝑑π‘₯ 𝑑𝑒 =π‘Ž sinh 𝑒 1 π‘₯ 2 βˆ’ π‘Ž 2 𝑑π‘₯ = π‘Ž 2 cosh 2 𝑒 βˆ’ π‘Ž 2 π‘Ž sinh 𝑒 𝑑𝑒 = 1 π‘Ž π‘Ž sinh 𝑒 cosh 2 𝑒 βˆ’1 𝑑𝑒= sinh 𝑒 sinh 𝑒 𝑑𝑒 =𝑒+𝑐=π‘Žπ‘Ÿπ‘π‘œπ‘ β„Ž π‘₯ π‘Ž +𝑐

40 Dealing with 1/ π‘Ž 2 + π‘₯ 2 , 1/ π‘₯ 2 βˆ’ π‘Ž 2 , ….
1 π‘Ž 2 + π‘₯ 2 𝑑π‘₯ =π‘Žπ‘Ÿπ‘ π‘–π‘›β„Ž π‘₯ π‘Ž +𝑐 1 π‘₯ 2 βˆ’ π‘Ž 2 𝑑π‘₯ =π‘Žπ‘Ÿπ‘π‘œπ‘ β„Ž π‘₯ π‘Ž +𝑐, π‘₯>π‘Ž π‘Žπ‘Ÿπ‘ π‘–π‘›β„Ž π‘₯= ln π‘₯+ π‘₯ π‘Žπ‘Ÿπ‘π‘œπ‘ β„Ž π‘₯= ln π‘₯+ π‘₯ 2 βˆ’1 , π‘₯β‰₯1 [Textbook] Show that π‘₯ 2 βˆ’16 𝑑π‘₯ = ln ? = π‘Žπ‘Ÿπ‘π‘œπ‘ β„Ž π‘₯ =π‘Žπ‘Ÿπ‘π‘œπ‘ β„Ž 2βˆ’π‘Žπ‘Ÿπ‘π‘œπ‘ β„Ž = ln βˆ’ ln = ln βˆ’ ln 2 = ln

41 ? Using a seemingly-sensible-but-turns-out-rather-nasty substitution
Harder Example sin 2 πœƒ + cos 2 πœƒ =1 1+ tan 2 πœƒ = sec 2 πœƒ 1+ sinh 2 𝑒 = cosh 2 𝑒 Show that π‘₯ 2 𝑑π‘₯ = 1 2 π‘Žπ‘Ÿπ‘ π‘–π‘›β„Ž π‘₯+ 1 2 π‘₯ 1+ π‘₯ 2 +𝐢. (Hint: Use a sensible substitution) ? Using a seemingly-sensible-but-turns-out-rather-nasty substitution Trying π‘₯=tanβ‘πœƒ: 𝑑π‘₯ π‘‘πœƒ = sec 2 πœƒ β†’ 𝑑π‘₯= sec 2 πœƒ π‘‘πœƒ 1+ π‘₯ 2 𝑑π‘₯ = π‘ π‘’π‘πœƒ sec 2 πœƒ π‘‘πœƒ Using integration by parts: 𝑒=π‘ π‘’π‘πœƒ 𝑑𝑣 𝑑π‘₯ = sec 2 πœƒ 𝑑𝑒 𝑑π‘₯ =π‘ π‘’π‘πœƒ tan πœƒ 𝑣=π‘‘π‘Žπ‘›πœƒ sec 3 πœƒ π‘‘πœƒ = sec πœƒ tan πœƒ βˆ’ sec πœƒ tan 2 πœƒ π‘‘πœƒ+𝐢 sec 3 πœƒ π‘‘πœƒ = sec πœƒ tan πœƒ βˆ’ sec πœƒ ( sec 2 πœƒβˆ’1) π‘‘πœƒ +𝐢 sec 3 πœƒ π‘‘πœƒ = sec πœƒ tan πœƒ βˆ’ sec 3 πœƒ + π‘ π‘’π‘πœƒ +𝐢 sec 3 πœƒ π‘‘πœƒ =π‘ π‘’π‘πœƒ tan πœƒ + ln sec πœƒ + tan πœƒ +𝐢 sec 3 πœƒ π‘‘πœƒ = 1 2 secπœƒ tan πœƒ ln sec πœƒ + tan πœƒ +𝐢′ = 1 2 π‘₯ 1+ π‘₯ ln π‘₯ 2 +π‘₯ +𝐢′ = 1 2 π‘₯ 1+ π‘₯ π‘Žπ‘Ÿπ‘ π‘–π‘›β„Ž π‘₯+𝐢′ ? Using the other-possible-substitution-that-turns-out-much-more-pretty-yay Trying π‘₯= sinh 𝑒 : 𝑑π‘₯ 𝑑𝑒 = cosh 𝑒 β†’ 𝑑π‘₯= cosh 𝑒 𝑑𝑒 1+ π‘₯ 2 𝑑π‘₯ = cosh 𝑒 Γ— cosh 𝑒 𝑑𝑒 = cosh 2 𝑒 𝑑𝑒 = cosh 2𝑒 𝑑𝑒 = 1 2 𝑒 sinh 2𝑒 +𝐢 = 1 2 π‘Žπ‘Ÿπ‘ π‘–π‘›β„Ž π‘₯+ 1 2 π‘₯ 1+ π‘₯ 2 +𝐢

42 Test Your Understanding So Far
Hint: You may want to factorise out first, as we did in Chapter 3. ? Using a hyperbolic substitution, evaluate π‘₯ π‘₯ 𝑑π‘₯ ? ? Using π‘₯=3 sinh 𝑒 yields

43 Integrating by Completing the Square
Determine π‘₯ 2 βˆ’8π‘₯+8 𝑑π‘₯ By completing the square, we can then use one of the standard results. = π‘₯ 2 βˆ’8π‘₯+8 𝑑π‘₯ = π‘₯βˆ’4 2 βˆ’8 𝑑π‘₯ Let 𝑒=π‘₯βˆ’4 β†’ 𝑑𝑒=𝑑π‘₯ = 𝑒 2 βˆ’8 𝑑𝑒 = ln π‘’βˆ’ 8 𝑒 𝐢 = ln π‘₯βˆ’4βˆ’2 2 π‘₯βˆ’ 𝐢 ? This is not in the standard form yet, but a simple substitution would make it so. Standard results: (in formula booklet) 1 π‘Ž 2 βˆ’ π‘₯ 2 𝑑π‘₯ = arcsin π‘₯ π‘Ž +𝐢, π‘₯ <π‘Ž π‘Ž 2 + π‘₯ 2 𝑑π‘₯ = 1 π‘Ž arctan π‘₯ π‘Ž +𝐢 π‘Ž 2 + π‘₯ 2 𝑑π‘₯ = arcsinβ„Ž π‘₯ π‘Ž +𝐢 π‘₯ 2 βˆ’ π‘Ž 2 𝑑π‘₯ = arccosh π‘₯ π‘Ž +𝐢, π‘₯>π‘Ž π‘Ž 2 βˆ’ π‘₯ 2 𝑑π‘₯ = 1 2π‘Ž ln π‘Ž+π‘₯ π‘Žβˆ’π‘₯ +𝐢 π‘₯ 2 βˆ’ π‘Ž 2 𝑑π‘₯ = 1 2π‘Ž ln π‘₯βˆ’π‘Ž π‘₯+π‘Ž +𝐢

44 Further Example ? Determine 1 12π‘₯+2 π‘₯ 2 𝑑π‘₯
2 π‘₯ 2 +12π‘₯=2 π‘₯ 2 +6π‘₯ =2 π‘₯+3 2 βˆ’9 1 12π‘₯+2 π‘₯ 2 𝑑π‘₯ = π‘₯+3 2 βˆ’9 𝑑π‘₯ = π‘₯+3 2 βˆ’9 𝑑π‘₯ Let 𝑒=π‘₯+3 β†’ 𝑑𝑒=𝑑π‘₯ = 𝑒 2 βˆ’9 𝑑𝑒 = π‘Žπ‘Ÿπ‘π‘œπ‘ β„Ž 𝑒 3 +𝐢 = π‘Žπ‘Ÿπ‘π‘œπ‘ β„Ž π‘₯ 𝐢 Standard results: (in formula booklet) 1 π‘Ž 2 βˆ’ π‘₯ 2 𝑑π‘₯ = arcsin π‘₯ π‘Ž +𝐢, π‘₯ <π‘Ž π‘Ž 2 + π‘₯ 2 𝑑π‘₯ = 1 π‘Ž arctan π‘₯ π‘Ž +𝐢 π‘Ž 2 + π‘₯ 2 𝑑π‘₯ = arcsinβ„Ž π‘₯ π‘Ž +𝐢 π‘₯ 2 βˆ’ π‘Ž 2 𝑑π‘₯ = arccosh π‘₯ π‘Ž +𝐢, π‘₯>π‘Ž π‘Ž 2 βˆ’ π‘₯ 2 𝑑π‘₯ = 1 2π‘Ž ln π‘Ž+π‘₯ π‘Žβˆ’π‘₯ +𝐢 π‘₯ 2 βˆ’ π‘Ž 2 𝑑π‘₯ = 1 2π‘Ž ln π‘₯βˆ’π‘Ž π‘₯+π‘Ž +𝐢

45 Test Your Understanding
? b ? c

46 Exercise 6E Pearson Core Pure Year 2 Pages 140-142
(If I was to pick one chapter where it was worth doing the Mixed Exercises [6F], it would be this one!)


Download ppt "CorePure2 Chapter 6 :: Hyperbolic Functions"

Similar presentations


Ads by Google