Presentation is loading. Please wait.

Presentation is loading. Please wait.

Section 9.1 Day 2 Graphing Quadratic Functions

Similar presentations


Presentation on theme: "Section 9.1 Day 2 Graphing Quadratic Functions"β€” Presentation transcript:

1 Section 9.1 Day 2 Graphing Quadratic Functions
Algebra 1 Section 9.1 Day 2 Graphing Quadratic Functions

2 Learning Targets Define and identify a quadratic function in standard form Identify a parabola shape and graph which is unique to the quadratic function Define and identify the axis of symmetry, vertex, number of zeros, domain and range of a quadratic graph Identify if the quadratic function has a graph with a maximum or a minimum Graph a quadratic function using a table

3 Graphing Procedure 1. Create a table with 5 points
2. Find the vertex and plug those values into the middle of the table. 3. Choose two x-values on either side of the vertex and plug into the function to find the y-values 4. Graph the points 5. Check to make sure the graph is a parabola

4 Example 1: Graphing Graph 𝑓 π‘₯ = π‘₯ 2 +4π‘₯+3 Vertex:
𝒙 𝒇(𝒙) βˆ’4 3 βˆ’3 βˆ’2 βˆ’1 𝒙 𝒇(𝒙) βˆ’4 βˆ’3 βˆ’2 βˆ’1 𝒙 𝒇(𝒙) Graph 𝑓 π‘₯ = π‘₯ 2 +4π‘₯+3 Vertex: βˆ’ 𝑏 2π‘Ž =βˆ’ =βˆ’2 𝑓 βˆ’2 = βˆ’ βˆ’2 + 3=βˆ’1 (βˆ’2, βˆ’1) Plug values into 𝑓(π‘₯) to find the coordinate pairs:

5 Example 1: Identifying Axis of Symmetry: Vertex: # of Zeros:
π‘₯=βˆ’2 Vertex: (βˆ’2, βˆ’1) # of Zeros: 2 (x-intercepts) Maximum/Minimum: Minimum Domain: All Real Numbers Range: 𝑦β‰₯βˆ’1

6 Example 2: Graphing 𝒙 𝒇(𝒙) βˆ’1 βˆ’5 1 2 βˆ’ 1 2 1 2 𝒙 𝒇(𝒙) βˆ’1 1 2 1 2 𝒙
1 2 βˆ’ 1 2 1 2 𝒙 𝒇(𝒙) βˆ’1 1 2 1 2 𝒙 𝒇(𝒙) Graph 𝑓 π‘₯ =βˆ’2 π‘₯ 2 +2π‘₯βˆ’1 Vertex: βˆ’ 𝑏 2π‘Ž =βˆ’ 2 2 βˆ’2 = 1 2 𝑓 =βˆ’ βˆ’1= βˆ’ 1 2

7 Example 2: Identifying Axis of Symmetry: Vertex: # of Zeros:
π‘₯= 1 2 Vertex: ( 1 2 , βˆ’ 1 2 ) # of Zeros: 0 (x-intercepts) Maximum/Minimum: Maximum Domain: All Real Numbers Range: π‘¦β‰€βˆ’ 1 2

8 Example 3: Graphing 𝒙 𝒇(𝒙) βˆ’1 11 2 1 3 𝒙 𝒇(𝒙) βˆ’1 1 2 3 𝒙 𝒇(𝒙)
2 1 3 𝒙 𝒇(𝒙) βˆ’1 1 2 3 𝒙 𝒇(𝒙) Graph 𝑓 π‘₯ =3 π‘₯ 2 βˆ’6π‘₯+2 Vertex: βˆ’ 𝑏 2π‘Ž =βˆ’ βˆ’ =1 𝑓 1 = βˆ’6 1 +2=βˆ’1

9 Example 3: Identifying Axis of Symmetry: Vertex: # of Zeros:
π‘₯=1 Vertex: (1, βˆ’1) # of Zeros: 2 (x-intercepts) Maximum/Minimum: Minimum Domain: All Real Numbers Range: 𝑦β‰₯βˆ’1

10 Calculator Procedure Y= β€œenter in the quadratic equation”
2nd window/tblset Indpnt: Ask 2nd graph/table Enter in x-values To graph, click the graph button


Download ppt "Section 9.1 Day 2 Graphing Quadratic Functions"

Similar presentations


Ads by Google