Download presentation
Presentation is loading. Please wait.
Published byLily O’Connor’ Modified over 5 years ago
1
CS344 : Introduction to Artificial Intelligence
Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 24- Expressions for alpha and beta probabilities
2
A Simple HMM r q a: 0.2 a: 0.3 b: 0.2 b: 0.1 a: 0.2 b: 0.1 b: 0.5
3
Forward or α-probabilities
Let αi(t) be the probability of producing w1,t-1, while ending up in state si αi(t)= P(w1,t-1,St=si), t>1
4
Initial condition on αi(t)
1.0 if i=1 αi(t)= 0 otherwise
5
Probability of the observation using αi(t)
P(w1,n) =Σ1 σ P(w1,n, Sn+1=si) = Σi=1 σ αi(n+1) σ is the total number of states
6
Recursive expression for α
αj(t+1) =P(w1,t, St+1=sj) =Σi=1 σ P(w1,t, St=si, St+1=sj) =Σi=1 σ P(w1,t-1, St=sj) P(wt, St+1=sj|w1,t-1, St=si) =Σi=1 σ P(w1,t-1, St=si) P(wt, St+1=sj|St=si) = Σi=1 σ αj(t) P(wt, St+1=sj|St=si)
7
The forward probabilities of “bbba”
Time Ticks 1 2 INPUT ε b bb bbb bbba 1.0 0.2 0.0 0.1 P(w,t) 0.3
8
Backward or β-probabilities
Let βi(t) be the probability of seeing wt,n, given that the state of the HMM at t is si βi(t)= P(wt,n,St=si)
9
Probability of the observation using β
P(w1,n)=β1(1)
10
Recursive expression for β
βj(t-1) =P(wt-1,n |St-1=sj) =Σj=1 σ P(wt-1,n, St=si |St-1=si) =Σi=1 σ P(wt-1, St=sj|St-1=si) P(wt,n,|wt-1,St=sj, St-1=si) =Σi=1 σ P(wt-1, St=sj|St-1=si) P(wt,n, |St=sj) (consequence of Markov Assumption) = Σj=1 σ P(wt-1, St=sj|St-1=si) βj(t)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.