Download presentation
Presentation is loading. Please wait.
1
Hour 38 Scattering Cross Sections
Physics 321 Hour 38 Scattering Cross Sections
2
The Scattering Problem
In the cm frame, two particles approach each other and scatter. Given the interaction, what is the distribution of scattered particles? π π 0 Ξ Ξ π 0 π
3
The Inverse Scattering Problem
Given the distribution of scattered particles, what is the interaction? This is a very hard but very interesting problem. π π 0 Ξ Ξ π 0 π
4
The Scattering Problem
The impact need not be head-on. β The distance between the trajectories is the impact parameter, b. Ξ π π 0 b
5
Relating ΞΈ to b The first thing we need to do is find the relationship between ΞΈ and b for a given type of interaction. Ξ b Ξ
6
Hard Sphere Scattering β b(ΞΈ)
cos π 2 = sin π 2 β π 2 = π π π=π sin πβπ 2
7
Coulomb Scattering β b(ΞΈ)
First we note that the total angular momentum is β=ππΌπ+ππ½π =ππ πΈ=π β = π 2 2π = β 2 2ππ 2
8
Coulomb Scattering β b(ΞΈ)
Next we use a result from the central force problem. πΈ= πΎ 2 π 2 β 2 π 2 β1 πΎ= π π π 1 π 2
9
Coulomb Scattering β b(ΞΈ)
Ο For hyperbolic orbits π π = πΆ 1+π cos π cos π πππ₯ =β 1 π π πππ₯ = π 2 + π 2 cos π 2 + π 2 = βsin π 2 = β 1 π
10
Coulomb Scattering β b(ΞΈ)
Rotate the figure so that π is measured with respect to the x-axis, as in Chapter 10. Ο π π = πΆ 1+π cos π As πββ, 1+π cos π β0 π πππ₯ = π 2 + π 2
11
Coulomb Scattering β b(ΞΈ)
Ο For hyperbolic orbits π π = πΆ 1+π cos π cos π πππ₯ =β 1 π π πππ₯ = π 2 + π 2 cos π 2 + π 2 = βsin π 2 = β 1 π
12
Coulomb Scattering β b(ΞΈ)
Using sin π 2 = 1 π Ο π 2 π π 2 β1 πΈ= πΎ 2 π 2 β 2 π 2 β1 = πΎ 2 π 2 β 2 cot 2 π 2 1
13
Coulomb Scattering β b(ΞΈ)
πΈ= πΎ 2 π 2 β 2 cot 2 π 2 β 2 =2π π 2 πΈ cot 2 π 2 = 2 2π π 2 πΈ πΈ πΎ 2 π = 4 π 2 πΈ 2 πΎ 2 cot π 2 = 2ππ 0 πΎ
14
Differential Cross Section - Definition
Consider a small beam striking a large target. The detector has solid angle ΞΞ© and detects all particles scattered. ΞΈ detector beam target ππ πΞ© = # ππ ππππ‘πππππ πππ‘πππ‘ππ/π ππ # ππ ππππ ππππ‘πππππ / sec Γ # π‘πππππ‘ ππππ‘πππππ ππππ ΓβΞ©
15
Differential Cross Section - Definition
Consider a large beam striking a small target. A detector has solid angle ΞΞ©. ΞΈ detector beam target ππ πΞ© = # ππ ππππ‘πππππ πππ‘πππ‘ππ/π ππ # ππ ππππ ππππ‘πππππ ππππ β π ππ Γ# π‘πππππ‘ ππππ‘πππππ ΓβΞ©
16
Differential Cross Section - Theoretical
We usually take 1 target particleβ¦ ΞΈ detector beam target ππ πΞ© = # ππ ππππ‘πππππ πππ‘πππ‘ππ/π ππ # ππ ππππ ππππ‘πππππ ππππ β π ππ Γ1ΓβΞ©
17
Differential Cross Section - Theoretical
ππ πΞ© = # ππ ππππ‘πππππ πππ‘πππ‘ππ/π ππ # ππ ππππ ππππ‘πππππ ππππ β π ππ Γ1ΓβΞ© Find the total number of beam particles per second between πβπ+βπ. This is the number in a ring of radius π. πβ‘ # ππ ππππ ππππ‘πππππ ππππ β π ππ This is: π 2ππ ππ
18
Differential Cross Section - Theoretical
ππ πΞ© = # ππ ππππ‘πππππ πππ‘πππ‘ππ/π ππ π βΞ© 2) Find the total number of scattered particles between πβπ+βπ. π=π π ππ= π β² π ππ This is: π 2ππ ππ=π 2ππ π β² π ππ
19
Differential Cross Section - Theoretical
ππ πΞ© = # ππ ππππ‘πππππ πππ‘πππ‘ππ/π ππ π βΞ© 3) Think of the detector as subtending angles βπ and βπ. The solid angle is defined by: βΞ©= sin π βπ βπ or more generally βΞ©= sin π ππ ππ (If the area of the detector is small and a distance R from the target, this can be expressed in terms of the detectorβs area: π΄β π
2 βΞ©.) This is: π 2ππ ππ=π 2ππ π β² π ππ
20
Differential Cross Section - Theoretical
ππ πΞ© = # ππ ππππ‘πππππ πππ‘πππ‘ππ/π ππ π βΞ© 4) The number of particles per second scattering into ππ is: π 2ππ π β² π ππ The number of those hitting the detector is π 2ππ π β² π ππΓ βπ 2π
21
Differential Cross Section - Theoretical
The number of particles detected per second is π π π β² π ππππ ππ πΞ© = π π π β² π ππππ π sin π ππππ = π π β² π sin π Or since we want a positive value, we usually write ππ πΞ© = 1 sin π π ππ ππ
22
Differential Cross Section - Theoretical
Or since we want a positive value, we usually write ππ πΞ© = 1 sin π π ππ ππ This is the usual βbook form,β but it is usually more convenient to write this as: ππ πΞ© = π 2 sin π 2 cos π ππ ππ
23
Total Cross Section The total cross section is the differential cross section integrated over all angles. π= ππ πΞ© πΞ©= ππ πΞ© sin πππππ
24
Hard Sphere Scattering (cm)
π= π 1 + π 2 sin πβπ 2 = π 1 + π 2 cos π 2 ππ ππ =β π 1 + π 2 cos πβπ 2 =β π 1 + π 2 sin π 2 ππ πΞ© = 1 2cos π 2 sin π π 1 + π cos π 2 sin π 2 ππ πΞ© = π 1 + π 2 2
25
Hard Sphere Scattering (cm)
ππ πΞ© = π 1 + π 2 2 π= ππ πΞ© πΞ©=π π 1 + π 2 2
26
Rutherford Scattering (cm)
π= πΎ 2π 0 cot π 2 ππ ππ = β πΎ 2π csc 2 π 2 ππ πΞ© = 1 2cos π 2 sin π πΎ 2π cot π csc 2 π 2 ππ πΞ© = 1 sin 4 π πΎ 4π = πΎ π sin 4 π 2
27
CM to Lab Conversion The only thing that changes in lab vs cm is βΞ©.
ππ πΞ© = # ππ ππππ‘πππππ πππ‘πππ‘ππ/π ππ # ππ ππππ ππππ‘πππππ / sec Γ # π‘πππππ‘ ππππ‘πππππ ππππ ΓβΞ© =ββ cos π πππ β π πππ β Ξ© ππ = ββ cos π ππ β π ππ β π πππ =β π ππ β ππ πΞ© πππ = ππ πΞ© ππ Γ π cos π ππ π cos π πππ
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.