Presentation is loading. Please wait.

Presentation is loading. Please wait.

AOF Wave front sensor modules GALACSI and GRAAL by Stefan Ströbele in behalf of the GALACSI and GRAAL Team members: R.Arsenault, R.Conzelmann, B.Delabre,

Similar presentations


Presentation on theme: "AOF Wave front sensor modules GALACSI and GRAAL by Stefan Ströbele in behalf of the GALACSI and GRAAL Team members: R.Arsenault, R.Conzelmann, B.Delabre,"— Presentation transcript:

1 AOF Wave front sensor modules GALACSI and GRAAL by Stefan Ströbele in behalf of the GALACSI and GRAAL Team members: R.Arsenault, R.Conzelmann, B.Delabre, R. Donaldson, M.Duchateau, G.Hess, P.Jolley, A. Jost, M.Kiekebusch, M.Lelouarn, P.Y.Madec, A.Manescau, J.Pirard, J.Quentin, R.Siebenmorgen, C.Soenke, S.Tordo, J.Vernet, SPARTA, DSM, 4LGS, ASSIST, Teams, Integration and IR and CCD detector groups 20 Years AO@ESO1

2 GRAAL- GALACSI Comparison 20 Years AO@ESO2 parameterGRAALGALACSI InstrumentHawk-I (IR imager) ESOMuse (VIS 3D-spectrograph) Lyon ModeMaintenance modeGLAOWide Field ModeNarrow Field Mode Field of view107.51 AO modeSCAOGLAO LTAO Performance (S.R. ~ 80% in K- band) x1.7 EE gainx2 EE gain S.R. >5% (10% goal) @650nm Natural Guide Stars On axis, ~ 8 mag R-mag 14.5 within 6.7 to 7.7 radius R-mag <17.5 within 52 to 105 radius On Axis, NIR, Jmag 15 Low Order sensing Sky coverage Close to bright stars 95%>90% Science target = TT reference 4LGSF config.NGS onlyØ12Ø2Ø20 WFS 1 NGS L3-CCD (40*40 sub app.) 4 LGS L3-CCD (40*40 sub app.) 1 TT L3-CCD 4 LGS L3-CCD (40*40 sub app.) 1 TT L3-CCD 4 LGS L3-CCD (40*40 sub app.) 1 IR Low Order Loop frequencyHO loop: 700 Hz TT loop: 250Hz HO loop: 1 kHz TT loop: 200Hz HO loop: 1 kHz LO loop: 200-500Hz

3 GALACSI GRAAL Commonalities Same – DSM, 4LGS, Instrument control SW with 2 different Configurations Common developments for – SPARTA and large parts of the SW and functionalities() Cluster? – L3CCD cameras for high order WF and tip tilt sensing (40 by 40 sub apertures) Common requirements: – WFS co-rotation to pupil – Seeing enhancer mode GLAO – GLAO modes: Tip tilt star outside the scientific field free of obscuration of the science beam 20 Years AO@ESO3

4 AO Types SCAO: – 1 Natural guide star, 1 WFS – WFS measures Turbulence – correction by the DM 4 GLAO: – 4 Laser guide stars, 4 WFSs – 1 Natural guide star, 1 TT Sens. – Average WFS signal High order DM command + tip tilt meas. LTAO: – 4 Laser guide stars, 4 WFSs (closer together) – 1 Natural guide star, 1 low order sensor – WFS signal + Tomography Algorithm high order DM command + tip tilt +focus meas. – correction by the DM

5 20 Years AO@ESO5 Altitude [km] LGS beam Ø [m] Beam offset [m] GRAAL GALACSI WFM GALACSI NFM LGS at 6LGS at 64LGS at 10 08000 1.47.862.60.50.07 2.27.83.90.70.1 11.26.9-3.50.5 166.6--0.8

6 GRAAL LGS and NGS pickup outside the science field HAWK-I co-rotates to the sky Matching of the WFS – DSM geometries counter rotation of the LGS WFSs 20 Years AO@ESO6 Integration to a existing instrument Strong constraints to space, weight, access, interfaces

7 GRAAL big pieces 20 Years AO@ESO7 Hawk-I shutter Alu- structure Steel structure bearing Torque drive Steel flange LGS trombone LGS WFS assembly NGS-TT sensor assembly MCM assembly Bearing (150Nm friction / 80kg) Torque drive (500Nm nominal / 70kg) Encoder (tape / scanning head) Cable-guide system (110 kg) Aluminium structure (75 kg) Steel structure (50 kg) Counterweight

8 GRAAL as seen from (above) the Nasmyth platform Flange sandwiched between UT- Nasmyth and Hawk-I Aluminum and steel structure for stiffness and weight constraints 1kHz, 0-noise LGS WFS, optics and trombone focusing on a Ø500 mm (x4) Retractable focal enlarger x6 (maintenance and commissioning), with WFS pick-up Internal co-rotator for pupil derotation, direct drive in torque mode, strip band encoder, control loop using VLT-SW standard library 100 kg counterweight to balance 150 kg of electronics ICPs for quick-separation

9 GRAAL arrangement on UT4 2 E-Cabinet on board – (WFS camera electronics) Uses the HAWK-I cable rotator Cabinet on the NP – motion control, Cabinet on Azimuth PF – SPARTA RTC – 5*NGC backend Cabinet in the computer room – SPARTA cluster 20 Years AO@ESO9

10 GRAAL Performance Image improvement x~2 (EE in 0.1 pixel), seeing reducer: x0.8 (in Ks) Image improvement x~2 (EE in 0.1 pixel), seeing reducer: x0.8 (in Ks) Improvement for all seeing conditions Improvement for all seeing conditions J. PaufiqueGRAAL FDR, 10/03/2009

11 MUSE-GALACSI MUSE: – 3d Spectrograph with 300 by 300 spatial resolution elements – Spectrometer resolution 1500-3000 – 24 spectrographs with 1CCD 4096 by 4096 pixels each – Wavelength range: 465- 930nm – Developed by consortium lead by CRA- Lyon, PI: R.Bacon Nasmyth platform over filled (Volume, Weight) extension for cabinets and access 20 Years AO@ESO11

12 GALACSI –FDR 16 th June 200912 WFM 1 MUSE FOV 1 faint NGS within 3.4 FOV 4 Sodium LGSs Rayleigh cone NFM NGS-LGS Configurations

13 20 Years AO@ESO13

14 LGS WFS path 14 Annular Mirror, ( no obstruction for MUSE WFM) LGS dichroic inserted for NFM WFS, LA LGS dichroic, Reflects 589nm transmits the rest to TTS Pupil relay Telecentricity lens Focus compensator Pyramid: LGS separation near LGS focus On linear stage to switch between modes Jitter actuator 2 nd Pupil relay from VLT AIT pupil

15 GALACSI Main assembly GALACSI at Nasmyth B UT4 5 E-Boxes on board 1 Cabinet on NP 1 Cabinet on AZ P 2 cable chains AO Facility Review, 24.04.0815

16 IRLOS AO Facility Review, 24.04.0816 HAWAI –I 1024 x 1024 pixels, 4 quadrant geometry 4 sub aperture lenslet array Frame rate 200/500 Hz for 20by20/8by8 pix RON <15 e-rms

17 GALACSI Performance 20 Years AO@ESO17 specification WFM performance NFM performance

18 Outlook to GRAAL Commissioning 20 Years AO@ESO18


Download ppt "AOF Wave front sensor modules GALACSI and GRAAL by Stefan Ströbele in behalf of the GALACSI and GRAAL Team members: R.Arsenault, R.Conzelmann, B.Delabre,"

Similar presentations


Ads by Google