Download presentation
Presentation is loading. Please wait.
Published byЈана Бјелица Modified over 6 years ago
1
Priming the Pump. Does Aid Pave the Way for Investment?
Samuel Brazys, University College Dublin Comments/suggestions welcome at The European Union’s Horizon 2020 research and innovation programme under grant agreement number (GLOBUS) provided generous funding support for this project.
2
Outline Introduction/Theory Data Method Results Conclusions
3
Introduction/Research Question/Hypothesis
Does aid presage local FDI? Hypotheses: Proximity Source Country Heterogeneity
4
Data The data codes 9,684 greenfield or expansion FDI projects from 126 source countries from 2003 to 2017 with flows estimated at over $1,026 billion. positive FDI inflows rather than net FDI inflows. World Bank IBRD-IDA data records $612 billion in net FDI inflows from 2003 to 2016, compared to $1,008 billion in positive FDI inflows in the fDi Markets data. Capital investment is estimated in the fDi Markets database for over 80% (7,920) of the project records. Over time, the series’ annual values have a correlation coefficient of with a p-value of “Aid Information Management System” (AIMS) datasets from Burundi, Democratic Republic of the Congo, Malawi, Nigeria, Senegal, Sierra Leone and Uganda World and China – total Africa coverage Collectively, these data cover 82,577 distinct project locations from 2000 to 2014
5
Method Knutsen et al. (2017) Quasi-experimental spatial-temporal
Active Aid Inactive Aid Non Aid Difference-in-difference Spatial cut-offs
6
Results – Overall Aid attracts local FDI (1) (2) (3) VARIABLES 25 km
(1) (2) (3) VARIABLES 25 km 50 km 75 km Active -0.038 -0.137* -0.377*** (0.052) (0.072) (0.066) Inactive -0.447*** -0.408*** -0.318*** (0.125) (0.073) (0.075) Observations 1,371 R-squared 0.262 0.234 0.259 Baseline controls YES Year FE Country FE Difference in difference 0.409 0.271 -0.059 F test: active-inactive=0 9.244 7.191 0.364 p value 0.002 0.007 0.546
7
Results – Source Country
Source country co-location EU & China (1) (2) (3) (4) (5) (6) (7) (8) VARIABLES US FDI NonUS FDI EU FDI NonEU FDI JP FDI NonJP FDI CN FDI NonCN FDI active_source 0.753*** 0.558*** 0.869*** 0.857*** (0.075) (0.033) (0.051) (0.034) inactive_source 0.682*** 0.587*** 0.781*** 0.793*** (0.032) (0.041) (0.036) (0.031) active_nonsource -0.334*** 0.019 -0.181*** -0.033 (0.054) (0.052) (0.045) inactive_nonsource -0.348*** -0.338*** -0.252*** -0.447*** (0.058) Observations 1,371 1,246 R-squared 0.263 0.219 0.320 0.222 0.271 0.143 0.312 0.199 Baseline controls YES Year FE Country FE Difference in difference 0.071 0.014 -0.029 0.357 0.088 0.064 0.414 F test: active-inactive=0 0.793 0.035 0.338 26.085 2.305 0.987 1.774 32.815 p value 0.373 0.851 0.561 0.000 0.129 0.321 0.183
8
Pan-African (WB, China)
Results - Robustness CHECK Pan-African (WB, China) Lagged Aid Alternate Controls Grid Cell Approach Spatial Lag
9
Conclusions Aid increases likelihood of FDI – by up to 40% – Aid works? Source country aid & FDI goes together. China & EU aid attracts other FDI Future questions Growth? Welfare? Equality?
10
Table SA1: World Bank and China Pan-African Results, Lags, and Alternative Controls
(S1) (S2) (S3) (S4) (S5) (S6) (S7) (S8) VARIABLES WB and China World Bank China Aid Lag 1 Aid Lag 2 Aid Lag 3 No Controls Expanded Controls active -0.179*** 0.059*** -0.174*** -0.124* -0.096 -0.146** -0.109 (0.014) (0.075) (0.085) (0.079) inactive -0.216*** -0.358*** -0.220*** -0.407*** -0.406*** -0.426*** -0.364*** (0.018) (0.073) (0.072) (0.081) Observations 8,756 1,371 1,374 1,215 R-squared 0.331 0.345 0.234 0.233 0.216 0.240 Baseline controls YES NO Year FE Country FE Difference in difference 0.037 0.417 0.046 0.283 0.310 0.279 0.255 F test: active-inactive=0 2.845 4.300 7.612 7.842 7.560 5.275 p value 0.092 0.000 0.038 0.006 0.005 0.022
11
Table SA2: Grid Cell Approach
(S9) (S10) (S11) VARIABLES 25 km 50 km Inhabited Cells Only 50km Active -0.016*** -0.055*** -0.065*** (0.005) (0.006) (0.007) inactive -0.088*** -0.214*** -0.234*** (0.011) (0.012) Observations 17,902 17,875 14,208 R-squared 0.066 0.211 0.210 Baseline controls YES Year FE Country FE Difference in difference 0.071 0.159 0.168 F test: active-inactive=0 89.150 p value 0.000
12
Table SA3: Spatial Autoregressive and Spatial Error Models
(S12) (S14) VARIABLES Spatial Lag Spatial Error active -0.178** -0.184** (0.083) (0.086) inactive -0.430*** -0.427*** (0.074) (0.075) Observations 1,371 Baseline controls YES Year FE Country FE p value rho/lambda 0.908 0.768 Difference in difference 0.252 0.243 Chi2 test: active-inactive=0 5.303 4.534 p value Chi2 0.021 0.033
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.