Presentation is loading. Please wait.

Presentation is loading. Please wait.

Critical Points and Extrema

Similar presentations


Presentation on theme: "Critical Points and Extrema"β€” Presentation transcript:

1 Critical Points and Extrema
3.1 Part I Critical Points and Extrema

2 Objectives Determine the local or global extreme values of functions.
1) Find 𝑓′(π‘₯). 2) Set 𝑓 β€² π‘₯ =0. Solve for x. Also, determine where 𝑓 β€² π‘₯ is undefined. 3) Plug the x-values you found in part (2) into 𝑓(π‘₯). 4) If there is an interval, plug the x-values into 𝑓(π‘₯). 5) Look at the graph to determine if your ordered pairs in parts (3) & (4) are maximums or minimums.

3 Extreme Value Theorem If f is continuous on a closed interval [a, b], then f has both a maximum and a minimum value on the interval.

4 Local Extreme Value Theorem
If a function f has a local maximum or minimum value, then either c is an endpoint

5 Critical Points A point at the interior of a function f at which f β€² = 0 or f β€² does not exist is a critical point of f.

6 Example 1 Determine where the function f(x) graphed below appears to have a derivative that is undefined or zero. Next, classify each as a relative max or relative min. 𝑓 β€² π‘₯ 𝑖𝑠 𝑒𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑, π‘Ÿπ‘’π‘™π‘Žπ‘‘π‘–π‘£π‘’ π‘šπ‘Žπ‘₯ 𝑓′ π‘₯ =0, π‘Ÿπ‘’π‘™π‘Žπ‘‘π‘–π‘£π‘’ π‘šπ‘–π‘›

7 Example 2 Find the critical points for the function f(x), then determine whether they are relative maximum or relative minimum values 𝑓 π‘₯ = π‘₯ 3 + π‘₯ 2 βˆ’8π‘₯+5 𝑓 β€² π‘₯ =3 π‘₯ 2 +2π‘₯βˆ’8 𝑓 β€² π‘₯ = π‘₯+2 3π‘₯βˆ’4 0= π‘₯+2 3π‘₯βˆ’4 π‘₯=βˆ’2, π‘₯= 4 3 π‘…π‘’π‘™π‘Žπ‘‘π‘–π‘£π‘’ π‘€π‘Žπ‘₯ π‘Žπ‘‘ π‘₯=βˆ’2 π‘…π‘’π‘™π‘Žπ‘‘π‘–π‘£π‘’ 𝑀𝑖𝑛 π‘Žπ‘‘ π‘₯= 4 3

8 Example 3 Find the critical points for the function f(x), then determine whether they are relative maximum or relative minimum values (you can use your calculator for this). 𝑓 π‘₯ =π‘₯βˆ’4 π‘₯ 𝑓 β€² π‘₯ =1βˆ’ 2 π‘₯ 𝑓 β€² π‘₯ =0β†’π‘₯=4 𝑓′(π‘₯) is undefinedβ†’π‘₯=0 0,0 𝑖𝑠 π‘Ž π‘Ÿπ‘’π‘™π‘Žπ‘‘π‘–π‘£π‘’ π‘šπ‘Žπ‘₯π‘–π‘šπ‘’π‘š 4,βˆ’4 𝑖𝑠 π‘Ž π‘šπ‘–π‘›π‘–π‘šπ‘’π‘š


Download ppt "Critical Points and Extrema"

Similar presentations


Ads by Google