Presentation is loading. Please wait.

Presentation is loading. Please wait.

Warm Up Simplify the fraction: a)

Similar presentations


Presentation on theme: "Warm Up Simplify the fraction: a) "β€” Presentation transcript:

1 Warm Up Simplify the fraction: a) πŸ”π’™ πŸ‘ b) πŸ‘+πŸ”π’™ πŸ‘ c) πŸ’+πŸ‘π’™ πŸ“
I will determine the number and types of roots of a polynomial Warm Up Simplify the fraction: a) πŸ”π’™ πŸ‘ b) πŸ‘+πŸ”π’™ πŸ‘ c) πŸ’+πŸ‘π’™ πŸ“ Solve using the quadratic formula πŸ‘ 𝒙 𝟐 +πŸ”π’™βˆ’πŸ’=𝟎 π‘₯= βˆ’π‘Β± 𝑏 2 βˆ’4π‘Žπ‘ 2π‘Ž

2 3 3 + 6π‘₯ 3 4 5 + 3π‘₯ 5 2π‘₯ 1+2π‘₯ 4+3π‘₯ 5 Warm Up Simplify the fraction:
a) πŸ”π’™ πŸ‘ b) πŸ‘+πŸ”π’™ πŸ‘ c) πŸ’+πŸ‘π’™ πŸ“ π‘₯ 3 1+2π‘₯ π‘₯ 5 4+3π‘₯ 5 2π‘₯

3 Solve using the quadratic formula
πŸ‘ 𝒙 𝟐 +πŸ”π’™βˆ’πŸ’=𝟎 π‘₯= βˆ’(6)Β± (6) 2 βˆ’4(3)(βˆ’4) 2(3) π‘₯= βˆ’6Β± π‘₯= βˆ’ π‘₯= βˆ’6βˆ’9.17 6 π‘₯=.52 π‘₯=2.53

4 Fundamental Theorem of Algebra
The Fundamental Theorem of Algebra states that: An nth degree polynomial will have n roots. Example: 𝑦= π‘₯ 2 +3π‘₯+2 is a second degree polynomial, therefore it has 2 roots. Verify this by graphing it on your calculator.

5 Fundamental Theorem of Algebra
State the number of roots for each polynomial. Verify by graphing on your calculator. 𝑦=4π‘₯βˆ’5 𝑦=βˆ’ π‘₯ 3 βˆ’2 π‘₯ 2 +29π‘₯βˆ’30 𝑦= π‘₯ 4 βˆ’2π‘₯βˆ’2 What's the problem with equation number 3? 1st degree, 1 x-intercept 3rd degree, 3 x-intercepts

6 Imaginary Numbers What is βˆ’1 ? That’s a lie. βˆ’1 =𝑖
In the 1500s mathematician Rafael Bombelli invented the concept of 𝑖 so that he could work with βˆ’1 .

7 Imaginary Numbers We can rewrite the square root of a negative number using 𝑖. Example: βˆ’16 = 16 βˆ— βˆ’1 βˆ’16 =4𝑖 Example 2: βˆ’64 =8𝑖

8 Imaginary Numbers If 𝑖= βˆ’1 , what is 𝑖 2 ? 𝑖 2 = βˆ’1 2 𝑖 2 =βˆ’1
𝑖 2 = βˆ’1 2 𝑖 2 =βˆ’1 Simplify: 8𝑖 10𝑖 8𝑖 10𝑖 =80 𝑖 2 βˆ’80 Simplify: 6βˆ’2𝑖+8+4𝑖 14+2𝑖

9 Imaginary Numbers Rewrite the expressions below: βˆ’36 βˆ’81 6𝑖 100
10𝑖 βˆ’3𝑖 4𝑖 2 5𝑖 βˆ’ 𝑖 2 6 3βˆ’2𝑖 +4𝑖 6𝑖 9𝑖 10 30 βˆ’80𝑖 βˆ’45𝑖 18βˆ’8𝑖

10 BREAK

11 Complex Roots π‘₯= βˆ’π‘Β± 𝑏 2 βˆ’4π‘Žπ‘ 2π‘Ž
Use the quadratic formula to solve: 0= π‘₯ 2 βˆ’4π‘₯+5 π‘₯= βˆ’(βˆ’4)Β± (βˆ’4) 2 βˆ’4(1)(5) 2(1) π‘₯= 4Β± βˆ’4 2 π‘₯= 4Β±2𝑖 2 π‘₯=2±𝑖 π‘₯= βˆ’π‘Β± 𝑏 2 βˆ’4π‘Žπ‘ 2π‘Ž

12 Complex Roots A real number plus or minus an imaginary number is called a complex number. 𝑦= π‘₯ 2 βˆ’4π‘₯+5 Has two complex roots: 2+𝑖 and 2βˆ’π‘– Graph the function on your calculator. How many times does it cross the x-axis? Since 𝑦= π‘₯ 2 βˆ’4π‘₯+5 does not cross the x-axis, it does not have any real roots.

13 𝟐 𝒓𝒆𝒂𝒍 𝒓𝒐𝒐𝒕𝒔 + 𝟐 π’„π’π’Žπ’‘π’π’†π’™ 𝒓𝒐𝒐𝒕𝒔 = πŸ’π’•π’‰ π’…π’†π’ˆπ’“π’†π’†
Complex Roots Let’s revisit 𝑦= π‘₯ 4 βˆ’2π‘₯βˆ’2 How many times does the function cross the x-axis? Based on the Fundamental Theorem of Algebra, how many roots should 𝑦= π‘₯ 4 βˆ’2π‘₯βˆ’2 have? 𝑦= π‘₯ 4 βˆ’2π‘₯βˆ’2 has 2 real roots and 2 imaginary roots 𝟐 𝒓𝒆𝒂𝒍 𝒓𝒐𝒐𝒕𝒔 + 𝟐 π’„π’π’Žπ’‘π’π’†π’™ 𝒓𝒐𝒐𝒕𝒔 = πŸ’π’•π’‰ π’…π’†π’ˆπ’“π’†π’†

14 Complex Roots 𝑦= π‘₯ 2 βˆ’4 𝑦= π‘₯ 3 +2 𝑦=(π‘₯βˆ’1)(π‘₯+3)(π‘₯βˆ’6) 2 real
Use your calculator and the Fundamental Theorem of Algebra to determine the number of real and imaginary roots for each polynomial. 𝑦= π‘₯ 2 βˆ’4 𝑦= π‘₯ 3 +2 𝑦=(π‘₯βˆ’1)(π‘₯+3)(π‘₯βˆ’6) 𝑦=βˆ’3 π‘₯ 4 +2 π‘₯ 2 βˆ’6 2 real 1 real, 2 complex 3 real 4 complex

15 Textbook: 9-90, 9-91, 9-105


Download ppt "Warm Up Simplify the fraction: a) "

Similar presentations


Ads by Google