Download presentation
Presentation is loading. Please wait.
1
Physical Chemistry Week 10
2
Quantisation of energy (Cont.)
At π₯=0, the wavefunction should be continuous: ππβπ
ππ+π
π βπππΏ = ππβπ
2ππ π βπππΏ + ππ+π
2ππ π πππΏ i.e. π
2 β π 2 β2ππ
π cos ππΏ βπ sin ππΏ = ( π
2 β π 2 +2ππ
π) cos ππΏ +π sin ππΏ Real parts of LHS and RHS are identities: π
2 β π 2 cos ππΏ β2π
π sin ππΏ = π
2 β π 2 cos ππΏ β2π
π sin ππΏ Imaginary parts should satisfy: β 2π
π cos ππΏ + π
2 β π 2 sin ππΏ =2π
π cos ππΏ + π
2 β π 2 sin ππΏ
3
Continued 4π
π cos ππΏ =2 π 2 β π
2 sin ππΏ
When cos ππΏ β 0 , we have tan ππΏ = 2π
π π 2 β π
2 , i.e. tan 2ππΈ πΏ β = 2 πΈ πβπΈ 2πΈβπ When cos ππΏ =0 and π 2 = π
2 , we have πΈ= π 2 and πΈ= π π 2 β 2 2π πΏ 2 where π=0,1,2,β¦. For a given π, if there is no such πΈ satisfy these two equations, then we discard this solution
4
One dimensional harmonic oscillator
Hamiltonian π» =β β 2 2π d 2 d π₯ π π π₯ 2 S.E.β β 2 2π d 2 π π₯ d π₯ π π π₯ 2 π π₯ =πΈπ π₯ Change variable from π₯ to π¦=π₯/πΌ where πΌ= β 2 π π π Under this operation, π(π₯) changes to π π¦ After some algebra, we have d 2 π π¦ d π¦ 2 + πβ π¦ 2 π π¦ =0 where π= 2πΈ βπ and π= π π /π
5
Solution of S.E. Asymptotic behaviour d 2 π d π¦ 2 β π¦ 2 π=0 as π¦βΒ±β
πβ π β π¦ 2 2 Rewrite π π¦ =πβ
π» π¦ π β π¦ , we have following Hermite eq. d 2 π» d π¦ 2 β2π¦ dπ» dπ¦ + πβ1 π»=0
6
Hermite polynomial Expand π» π¦ as π» π¦ = π=0 β π π π¦ π . Plug in this expansion into H. eq. π=0 β π¦ π π π+2 π+2 π+1 β 2πβπ+1 π π =0 π π+2 = 2π+1βπ π+2 π+1 π π π=0 β π π π¦ π ββ as fast as π π¦ 2 when π¦βΒ±β. Thus π~ π β π¦ π=0 β π π π¦ π ββ as fast as π π¦ 2 2
7
Boundary conditions To ensure π Β±β =0 the expansion of π» π¦ must be truncated, i.e. π π β 0, π π+2 =0 then 2π+1=π= 2πΈ βπ thus πΈ π =βπ π , π=0,1,2,β¦ Ground state energy πΈ 0 = 1 2 βπ β zero-point energy
8
Properties of Hermite polynomials
Recursive relation π» π+1 β2π¦ π» π +2π π» πβ1 =0 Orthogonal relation ββ +β dπ¦ π» π β² π» π π β π¦ 2 = & ,if π β² β π π 2 π π!& , if π β² =π First few Hermite polynomials π 1 2 π» π 2π¦ 4 π¦ 2 β2
9
Normalisation of wavefunction
ββ +β dπ₯ π π β π₯ π π π₯ &= π π 2 πΌ ββ +β dπ¦ π» π 2 π β π¦ 2 &= π π 2 πΌ π 2 π π! Thus π π = πΌ π 2 π π! β 1 2 π π π₯ = πΌ π 2 π π! β 1 2 π» π π₯ πΌ π β π₯ 2 2 πΌ 2
10
Mean value of π₯ π₯ &= ββ +β dπ₯ π π β π₯ π₯ π π π₯ &= π π 2 πΌ 2 ββ +β dπ¦ π» π π¦ π¦ π» π π¦ π β π¦ 2 &= π π 2 πΌ 2 ββ +β dπ¦ π» π π» π+1 +2π π» πβ1 2 π β π¦ 2 &=0
11
Mean value of π₯ 2 π₯ 2 &= ββ +β dπ₯ π π β π₯ π₯ 2 π π π₯ &= π π 2 πΌ 3 ββ +β dπ¦ π¦ π» π π¦ π¦ π» π π¦ π β π¦ 2 &= π π 2 πΌ 3 ββ +β dπ¦ π» π+1 +2π π» πβ π β π¦ 2 &= 1 4 π π 2 πΌ 3 ββ +β dπ¦ π» π π π» π+1 π» πβ1 +4 π 2 π» πβ1 π β π¦ 2 &= πΌ 2 π 2 π+2 π! π 2 π+1 π+1 !+π π 2 π+1 π! &= πΌ 2 π+ 1 2
12
Mean value of potential energy
π &= π π π₯ 2 &= 1 2 π π πΌ 2 π &= 1 2 βπ π &= 1 2 πΈ π
13
Tunnelling β classically forbidden region
Classically forbidden region is where π π₯ > πΈ π Quantal oscillator can reach classically forbidden region with some tunnelling probability For ground state, π 0 = π 0 π β π₯ 2 2 πΌ 2 , πΈ 0 = 1 2 βπ. Denote π₯ πΏ and π₯ π
as the negative and positive solutions of π π₯ = πΈ 0 respectively. The tunnelling probability is then π π₯< π₯ πΏ +π π₯> π₯ π
=2 π₯ π
+β dπ₯ π 0 2 π₯ β15.7%
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.