Presentation is loading. Please wait.

Presentation is loading. Please wait.

Physical Chemistry Week 10

Similar presentations


Presentation on theme: "Physical Chemistry Week 10"β€” Presentation transcript:

1 Physical Chemistry Week 10

2 Quantisation of energy (Cont.)
At π‘₯=0, the wavefunction should be continuous: π‘–π‘˜βˆ’πœ… π‘–π‘˜+πœ… 𝑒 βˆ’π‘–π‘˜πΏ = π‘–π‘˜βˆ’πœ… 2π‘–π‘˜ 𝑒 βˆ’π‘–π‘˜πΏ + π‘–π‘˜+πœ… 2π‘–π‘˜ 𝑒 π‘–π‘˜πΏ i.e. πœ… 2 βˆ’ π‘˜ 2 βˆ’2π‘–πœ…π‘˜ cos π‘˜πΏ βˆ’π‘– sin π‘˜πΏ = ( πœ… 2 βˆ’ π‘˜ 2 +2π‘–πœ…π‘˜) cos π‘˜πΏ +𝑖 sin π‘˜πΏ Real parts of LHS and RHS are identities: πœ… 2 βˆ’ π‘˜ 2 cos π‘˜πΏ βˆ’2πœ…π‘˜ sin π‘˜πΏ = πœ… 2 βˆ’ π‘˜ 2 cos π‘˜πΏ βˆ’2πœ…π‘˜ sin π‘˜πΏ Imaginary parts should satisfy: βˆ’ 2πœ…π‘˜ cos π‘˜πΏ + πœ… 2 βˆ’ π‘˜ 2 sin π‘˜πΏ =2πœ…π‘˜ cos π‘˜πΏ + πœ… 2 βˆ’ π‘˜ 2 sin π‘˜πΏ

3 Continued 4πœ…π‘˜ cos π‘˜πΏ =2 π‘˜ 2 βˆ’ πœ… 2 sin π‘˜πΏ
When cos π‘˜πΏ β‰ 0 , we have tan π‘˜πΏ = 2πœ…π‘˜ π‘˜ 2 βˆ’ πœ… 2 , i.e. tan 2π‘šπΈ 𝐿 ℏ = 2 𝐸 π‘‰βˆ’πΈ 2πΈβˆ’π‘‰ When cos π‘˜πΏ =0 and π‘˜ 2 = πœ… 2 , we have 𝐸= 𝑉 2 and 𝐸= 𝑛 πœ‹ 2 ℏ 2 2π‘š 𝐿 2 where 𝑛=0,1,2,…. For a given 𝑉, if there is no such 𝐸 satisfy these two equations, then we discard this solution

4 One dimensional harmonic oscillator
Hamiltonian 𝐻 =βˆ’ ℏ 2 2π‘š d 2 d π‘₯ π‘˜ 𝑓 π‘₯ 2 S.E.βˆ’ ℏ 2 2π‘š d 2 πœ“ π‘₯ d π‘₯ π‘˜ 𝑓 π‘₯ 2 πœ“ π‘₯ =πΈπœ“ π‘₯ Change variable from π‘₯ to 𝑦=π‘₯/𝛼 where 𝛼= ℏ 2 π‘š π‘˜ 𝑓 Under this operation, πœ“(π‘₯) changes to πœ™ 𝑦 After some algebra, we have d 2 πœ™ 𝑦 d 𝑦 2 + πœ†βˆ’ 𝑦 2 πœ™ 𝑦 =0 where πœ†= 2𝐸 β„πœ” and πœ”= π‘˜ 𝑓 /π‘š

5 Solution of S.E. Asymptotic behaviour d 2 πœ™ d 𝑦 2 βˆ’ 𝑦 2 πœ™=0 as π‘¦β†’Β±βˆž
πœ™β†’ 𝑒 βˆ’ 𝑦 2 2 Rewrite πœ™ 𝑦 =𝑁⋅𝐻 𝑦 𝑒 βˆ’ 𝑦 , we have following Hermite eq. d 2 𝐻 d 𝑦 2 βˆ’2𝑦 d𝐻 d𝑦 + πœ†βˆ’1 𝐻=0

6 Hermite polynomial Expand 𝐻 𝑦 as 𝐻 𝑦 = 𝑛=0 ∞ 𝑐 𝑛 𝑦 𝑛 . Plug in this expansion into H. eq. 𝑛=0 ∞ 𝑦 𝑛 𝑐 𝑛+2 𝑛+2 𝑛+1 βˆ’ 2π‘›βˆ’πœ†+1 𝑐 𝑛 =0 𝑐 𝑛+2 = 2𝑛+1βˆ’πœ† 𝑛+2 𝑛+1 𝑐 𝑛 𝑛=0 ∞ 𝑐 𝑛 𝑦 𝑛 β†’βˆž as fast as 𝑒 𝑦 2 when π‘¦β†’Β±βˆž. Thus πœ™~ 𝑒 βˆ’ 𝑦 𝑛=0 ∞ 𝑐 𝑛 𝑦 𝑛 β†’βˆž as fast as 𝑒 𝑦 2 2

7 Boundary conditions To ensure πœ™ ±∞ =0 the expansion of 𝐻 𝑦 must be truncated, i.e. 𝑐 𝜈 β‰ 0, 𝑐 𝜈+2 =0 then 2𝜈+1=πœ†= 2𝐸 β„πœ” thus 𝐸 𝜈 =β„πœ” 𝜈 , 𝜈=0,1,2,… Ground state energy 𝐸 0 = 1 2 β„πœ” – zero-point energy

8 Properties of Hermite polynomials
Recursive relation 𝐻 𝜈+1 βˆ’2𝑦 𝐻 𝜈 +2𝜈 𝐻 πœˆβˆ’1 =0 Orthogonal relation βˆ’βˆž +∞ d𝑦 𝐻 𝜈 β€² 𝐻 𝜈 𝑒 βˆ’ 𝑦 2 = & ,if 𝜈 β€² β‰ πœˆ πœ‹ 2 𝜈 𝜈!& , if 𝜈 β€² =𝜈 First few Hermite polynomials 𝜈 1 2 𝐻 𝜈 2𝑦 4 𝑦 2 βˆ’2

9 Normalisation of wavefunction
βˆ’βˆž +∞ dπ‘₯ πœ“ 𝜈 βˆ— π‘₯ πœ“ 𝜈 π‘₯ &= 𝑁 𝜈 2 𝛼 βˆ’βˆž +∞ d𝑦 𝐻 𝜈 2 𝑒 βˆ’ 𝑦 2 &= 𝑁 𝜈 2 𝛼 πœ‹ 2 𝜈 𝜈! Thus 𝑁 𝜈 = 𝛼 πœ‹ 2 𝜈 𝜈! βˆ’ 1 2 πœ“ 𝜈 π‘₯ = 𝛼 πœ‹ 2 𝜈 𝜈! βˆ’ 1 2 𝐻 𝜈 π‘₯ 𝛼 𝑒 βˆ’ π‘₯ 2 2 𝛼 2

10 Mean value of π‘₯ π‘₯ &= βˆ’βˆž +∞ dπ‘₯ πœ“ 𝜈 βˆ— π‘₯ π‘₯ πœ“ 𝜈 π‘₯ &= 𝑁 𝜈 2 𝛼 2 βˆ’βˆž +∞ d𝑦 𝐻 𝜈 𝑦 𝑦 𝐻 𝜈 𝑦 𝑒 βˆ’ 𝑦 2 &= 𝑁 𝜈 2 𝛼 2 βˆ’βˆž +∞ d𝑦 𝐻 𝜈 𝐻 𝜈+1 +2𝜈 𝐻 πœˆβˆ’1 2 𝑒 βˆ’ 𝑦 2 &=0

11 Mean value of π‘₯ 2 π‘₯ 2 &= βˆ’βˆž +∞ dπ‘₯ πœ“ 𝜈 βˆ— π‘₯ π‘₯ 2 πœ“ 𝜈 π‘₯ &= 𝑁 𝜈 2 𝛼 3 βˆ’βˆž +∞ d𝑦 𝑦 𝐻 𝜈 𝑦 𝑦 𝐻 𝜈 𝑦 𝑒 βˆ’ 𝑦 2 &= 𝑁 𝜈 2 𝛼 3 βˆ’βˆž +∞ d𝑦 𝐻 𝜈+1 +2𝜈 𝐻 πœˆβˆ’ 𝑒 βˆ’ 𝑦 2 &= 1 4 𝑁 𝜈 2 𝛼 3 βˆ’βˆž +∞ d𝑦 𝐻 𝜈 𝜈 𝐻 𝜈+1 𝐻 πœˆβˆ’1 +4 𝜈 2 𝐻 πœˆβˆ’1 𝑒 βˆ’ 𝑦 2 &= 𝛼 2 πœ‹ 2 𝜈+2 𝜈! πœ‹ 2 𝜈+1 𝜈+1 !+𝜈 πœ‹ 2 𝜈+1 𝜈! &= 𝛼 2 𝜈+ 1 2

12 Mean value of potential energy
𝑉 &= π‘˜ 𝑓 π‘₯ 2 &= 1 2 π‘˜ 𝑓 𝛼 2 𝜈 &= 1 2 β„πœ” 𝜈 &= 1 2 𝐸 𝜈

13 Tunnelling – classically forbidden region
Classically forbidden region is where 𝑉 π‘₯ > 𝐸 𝜈 Quantal oscillator can reach classically forbidden region with some tunnelling probability For ground state, πœ“ 0 = 𝑁 0 𝑒 βˆ’ π‘₯ 2 2 𝛼 2 , 𝐸 0 = 1 2 β„πœ”. Denote π‘₯ 𝐿 and π‘₯ 𝑅 as the negative and positive solutions of 𝑉 π‘₯ = 𝐸 0 respectively. The tunnelling probability is then 𝑃 π‘₯< π‘₯ 𝐿 +𝑃 π‘₯> π‘₯ 𝑅 =2 π‘₯ 𝑅 +∞ dπ‘₯ πœ“ 0 2 π‘₯ β‰ˆ15.7%


Download ppt "Physical Chemistry Week 10"

Similar presentations


Ads by Google