Presentation is loading. Please wait.

Presentation is loading. Please wait.

The Schrödinger Recipe

Similar presentations


Presentation on theme: "The Schrödinger Recipe"— Presentation transcript:

1 The Schrödinger Recipe

2 All you need to remember is the recipe to obtain the Quantum Mechanical Hamiltonian is dead simple – express the total energy in momenta and coordinates p2/2m + V = E

3 and then replace the momenta by
All you need to remember is the recipe to obtain the Quantum Mechanical Hamiltonian is dead simple – express the total energy in momenta and coordinates p2/2m + V = E and then replace the momenta by pq → -iħ ∂/∂q

4 ħ is Dirac’s constant h/2π
All you need to remember is the recipe to obtain the Quantum Mechanical Hamiltonian is dead simple – express the total energy in momenta and coordinates p2/2m + V = E and then replace the momenta by pq → -iħ ∂/∂q q → q ħ is Dirac’s constant h/2π

5

6 ħ is Dirac’s constant h/2π
All you need to remember is the recipe to obtain the Quantum Mechanical Hamiltonian is dead simple – express the total energy in momenta and coordinates p2/2m + V = E and then replace the momenta by pq → -iħ ∂/∂q Where ħ is Dirac’s constant h/2π and i = √-1

7 Let’s recap

8 What did Schroedinger do?

9 Maxwell Equation for Light Waves

10 Maxwell Equation for Light Waves
Δ 2 Ψ = 1 ∂2Ψ c ∂t2

11 Maxwell Equation for Light Waves
Δ 2 Ψ = 1 ∂2Ψ c ∂t2 Δ 8π2m h2 2 ψ (E-V) ψ = 0

12 Δ 2 Ψ = 1 ∂2Ψ c2 ∂t2 Δ 8π2m h2 2 ψ + (E-V) ψ = 0
Maxwell Equation for Light Waves Δ 2 Ψ = 1 ∂2Ψ c ∂t2 Δ 8π2m h2 2 ψ (E-V) ψ = 0 Schroedinger equation for electrons

13 Δ 8 π 2m h2 2Ψ (E-V) Ψ = 0

14 Δ 8 π 2m h2 2Ψ (E-V) Ψ = 0 ħ = h/2π Δ 2m ħ2 2Ψ (E-V) Ψ = 0

15 Δ 2m ħ2 2Ψ (E-V) Ψ = 0

16 Δ 2m ħ2 2Ψ (E-V) Ψ = 0 Δ ħ2 2m 2Ψ + (E-V) Ψ = 0

17 2m Δ ħ2 2Ψ + (E-V) Ψ = 0 Δ ħ2 2Ψ + (E-V) Ψ = 0 2m Δ ħ2 2 + V Ψ = EΨ 2m
2 + V Ψ = EΨ

18 2m Δ ħ2 2Ψ + (E-V) Ψ = 0 Δ ħ2 2Ψ + (E-V) Ψ = 0 2m Δ ħ2 2 + V Ψ = EΨ 2m
2 + V Ψ = EΨ H Ψ = EΨ

19 H is called the Hamiltonian
Δ 2m ħ2 2Ψ (E-V) Ψ = 0 Δ ħ2 2m 2Ψ + (E-V) Ψ = 0 Δ ħ2 2m 2 + V Ψ = EΨ H Ψ = EΨ H is called the Hamiltonian

20 Now for a bit of Magic!

21 Start off with the Total Energy
= Kinetic Energy + Potential Energy E = T + V

22 T + V = E

23 T + V = E ½mv2 + V = E

24 T + V = E ½mv2 + V = E p2/2m + V = E

25 T + V = E ½mv2 + V = E p2/2m + V = E p2 = px2 + py2 + pz2

26 T + V = E ½mv2 + V = E p2/2m + V = E p2 = px2 + py2 + pz2 px → -iħ ∂/∂x

27 T + V = E ½mv2 + V = E p2/2m + V = E p2 = px2 + py2 + pz2 px → -iħ ∂/∂x py → -iħ ∂/∂y

28 T + V = E ½mv2 + V = E p2/2m + V = E p2 = px2 + py2 + pz2 px → -iħ ∂/∂x py → -iħ ∂/∂y pz → -iħ ∂/∂z

29 Δ T + V = E ½mv2 + V = E p2/2m + V = E p2 = px2 + py2 + pz2
px → -iħ ∂/∂x py → -iħ ∂/∂y pz → -iħ ∂/∂z Δ 2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2

30 Δ Δ T + V = E ½mv2 + V = E p2/2m + V = E p2 = px2 + py2 + pz2
px → -iħ ∂/∂x py → -iħ ∂/∂y pz → -iħ ∂/∂z Δ 2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 p2 = - ħ Δ

31 Δ Δ Δ T + V = E ½mv2 + V = E p2/2m + V = E p2 = px2 + py2 + pz2
px → -iħ ∂/∂x py → -iħ ∂/∂y pz → -iħ ∂/∂z Δ 2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 p2 = - ħ Δ Δ + V = E 2m

32 H is called the Hamiltonian
Δ 2m ħ2 2Ψ (E-V) Ψ = 0 Δ ħ2 2m 2Ψ + (E-V) Ψ = 0 Δ ħ2 2m 2 + V Ψ = EΨ H Ψ = EΨ H is called the Hamiltonian

33 All you need to remember is the recipe to obtain the Quantum Mechanical Hamiltonian is dead simple – express the total energy in momenta and coordinates p2/2m + V = E

34 and then replace the momenta by
All you need to remember is the recipe to obtain the Quantum Mechanical Hamiltonian is dead simple – express the total energy in momenta and coordinates p2/2m + V = E and then replace the momenta by pq → -iħ ∂/∂q

35 ħ is Dirac’s constant h/2π
All you need to remember is the recipe to obtain the Quantum Mechanical Hamiltonian is dead simple – express the total energy in momenta and coordinates p2/2m + V = E and then replace the momenta by pq → -iħ ∂/∂q Where ħ is Dirac’s constant h/2π and i = √-1

36

37 Δ 8 π 2m h2 2Ψ (E-V) Ψ = 0 ħ = h/2π Δ 2m ħ2 2Ψ (E-V) Ψ = 0 Δ ħ2 2m 2Ψ + (E-V) Ψ = 0

38 Δ 8π2m h2 2 ψ + (E-V) ψ = 0 -h2 2m Δ 2 + V ψ = E ψ H ψ = E ψ
h = h/2π H ψ = E ψ H is the Hamiltonian

39 E = - h2 (8π2m)-1∂2/∂x2 + V Δ 8π2m h2 2 ψ (E-V) ψ = 0

40 ψ 2 ψ = - 1 λ2 Δ ψ 2m Δ 2 ψ = - (E – V) h2

41 Δ 8π2m h2 2 ψ + (E-V) ψ = 0 h2 8π2m Δ 2 ψ + (E-V) ψ = 0 h2 8π2m Δ
2 ψ + (E-V) ψ = 0 ħ = h/2π


Download ppt "The Schrödinger Recipe"

Similar presentations


Ads by Google