Download presentation
Presentation is loading. Please wait.
1
CONTINUITY AND ONE-SIDED LIMITS
Section 1.4
2
When you are done with your homework, you should be able to…
Determine continuity at a point and continuity on an open interval Determine one-sided limits and continuity on a closed interval Use properties of continuity Understand and use the Intermediate Value Theorem
3
CONTINUITY AT A POINT A function is continuous at c if the following three conditions are met. is defined. exists.
4
CONTINUITY ON AN OPEN INTERVAL
A function is continuous on an open interval if it is continuous at each point in the interval. A function that is continuous on the entire real line is everywhere continuous.
5
Is the following function continuous at x = 3?
Yes No
6
Is the following function continuous at x = 2?
Yes No since the limit as x approaches 2 does not exist. No since the function evaluated at 2 is not equal to the limit as x approaches 2.
7
ONE-SIDED LIMITS means the limit as x approaches c from the right.
means the limit as x approaches c from the left. One-sided limits are useful in taking limits of functions involving radicals. If n is an even integer,
8
THE GREATEST INTEGER FUNCTION
The greatest integer function is denoted
9
Evaluate -1 -2 Does not exist
10
THE EXISTENCE OF A LIMIT
Let f be a function and let c and L be real numbers. The limit of as x approaches c is L if and only if and
11
Evaluate -1 0.5 Does not exist
12
CONTINUITY ON A CLOSED INTERVAL
A function f is continuous on a closed interval if it is continuous on the open interval and and The function f is continuous from the right at a and continuous from the left at b.
13
PROPERTIES OF CONTINUITY
If b is a real number and f and g are continuous at , then the following functions are also continuous at c. Scalar multiple Sum and difference Product quotient
14
Polynomial Rational Radical Trigonometric
EXAMPLES OF FUNCTIONS WHICH ARE CONTINUOUS AT EVERY POINT IN THEIR DOMAINS Polynomial Rational Radical Trigonometric
15
CONTINUITY OF A COMPOSITE FUNCTION
If g is continuous at c and f is continuous at , then the composite function given by is continuous at c.
16
THE INTERMEDIATE VALUE THEOREM
If f is continuous on the closed interval and d is any number between and , then there is at least one number c in such that
17
A VISUAL OF THE IVT
18
CONSIDER THE FUNCTION BELOW ON THE GIVEN INTERVAL
CONSIDER THE FUNCTION BELOW ON THE GIVEN INTERVAL. IF THE IVT CAN BE APPLIED USE IT TO FIND THE INPUT VALUE WHICH YIELDS AN OUTPUT OF ½. The IVT cannot be applied since the function is not continuous. The IVT can be applied since the function is continuous on the given interval.
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.