Presentation is loading. Please wait.

Presentation is loading. Please wait.

Algebra 1 Ongoing Support

Similar presentations


Presentation on theme: "Algebra 1 Ongoing Support"β€” Presentation transcript:

1 Algebra 1 Ongoing Support
By Department of Curriculum and Instruction/Mathematics

2 π‘₯ 2 π‘₯ 2 π‘₯ 2 π‘₯ 2 π‘₯ 2 π‘₯ 2 x x x x x x x x Adding Polynomials 2π‘₯ 2 +5π‘₯βˆ’1
+ ( π‘₯ 2 βˆ’2π‘₯+3) = 3 π‘₯ 2 +3π‘₯+2 π‘₯ 2 π‘₯ 2 x x x x x -1 π‘₯ 2 π‘₯ 2 π‘₯ 2 1 π‘₯ 2 -x -x 1 x x x 1 1 1

3 Adding Polynomials (Find the Perimeter)
8π‘₯+2 4π‘₯ 2 βˆ’2π‘₯+3 π‘₯ 2 βˆ’1 3π‘₯ 2 +8π‘₯+2 π‘₯ 2 βˆ’1

4 Subtracting Polynomials
2π‘₯ 2 +5π‘₯βˆ’1 + ( βˆ’π‘₯ 2 +2π‘₯βˆ’3) ( π‘₯ 2 βˆ’2π‘₯+3) βˆ’ = π‘₯ 2 +7π‘₯βˆ’4 π‘₯ 2 π‘₯ 2 x x x x x -1 π‘₯ 2 x -1 - π‘₯ 2 π‘₯ 2 -1 1 -x x -x x -1 1 -1 1

5 Subtracting Polynomials
You Try! ( 2π‘₯ 2 +3π‘₯βˆ’5)βˆ’(3 π‘₯ 2 +4π‘₯βˆ’9)

6 +6 3x X + 2 3 Factoring out the GCF x x x x 3𝒙+πŸ” πŸ‘(𝒙+𝟐) 3𝒙+πŸ”
1 Graphic Organizer X 1 x 3x +6 3𝒙+πŸ” πŸ‘(𝒙+𝟐) x 1 X x 1 +1 1 x +6 3 Have teachers draw even groups 3𝒙+πŸ” πŸ‘(𝒙+𝟐) 3 groups of x+2

7 You Try! πŸπ’™βˆ’πŸ– Factoring out the GCF
Teachers must understand algebra tiles show the concept of how many duplications can be made using the most available tiles in each group

8 +6 -3x X βˆ’ 2 -3 Factoring out the GCF -3𝒙+πŸ” βˆ’πŸ‘(π’™βˆ’πŸ) -3𝒙+πŸ”
1 x - 2 Graphic Organizer x -1 -3x +6 X βˆ’ 2 -1 -x 1 x -1 -3 -x -3 Gives your kids the opportunity to do something different You would be surprised how many of your students will engage because it’s different and it doesn’t feel like math -3𝒙+πŸ” βˆ’πŸ‘(π’™βˆ’πŸ)

9 You Try! βˆ’πŸπ’™βˆ’πŸ– βˆ’πŸ’π±+𝟐 Factoring out the GCF
βˆ’πŸπ’™βˆ’πŸ– βˆ’πŸ’π±+𝟐 Teachers must understand algebra tiles show the concept of how many duplications can be made using the most available tiles in each group

10 Factoring out the GCF πŸ’ 𝒙 𝟐 βˆ’πŸπ’™ π‘₯ 2 -x -x

11 π‘₯ 2 π‘₯ 2 π‘₯ 2 π‘₯ 2 βˆ’2π‘₯ 4π‘₯ 2 2x βˆ’1 πŸπ’™ πŸ’ 𝒙 𝟐 βˆ’πŸπ’™=𝟐𝐱(πŸπ±βˆ’πŸ) πŸπ’™βˆ’πŸ 2x
Factoring out the GCF X X πŸπ’™βˆ’πŸ x x -1 Graphic Organizer π‘₯ 2 π‘₯ 2 -x x 4π‘₯ 2 βˆ’2π‘₯ 2x βˆ’1 x + x πŸπ’™ -x 2x π‘₯ 2 π‘₯ 2 -x x πŸ’ 𝒙 𝟐 βˆ’πŸπ’™=𝟐𝐱(πŸπ±βˆ’πŸ)

12 Factoring out the GCF 3 𝒙 𝟐 βˆ’πŸ”π’™ π‘₯ 2 -x -x -x -x -x -x

13 π‘₯ 2 βˆ’6π‘₯ 3π‘₯ 2 x βˆ’2 πŸ‘π’™ π’™βˆ’πŸ 3x 3 𝒙 𝟐 βˆ’πŸ”π’™ =πŸ‘π’™(π’™βˆ’πŸ) Factoring out the GCF x
-1 -1 π‘₯ 2 -x Graphic Organizer x 3π‘₯ 2 βˆ’6π‘₯ x βˆ’2 πŸ‘π’™ +x 3x +x 3 𝒙 𝟐 βˆ’πŸ”π’™ =πŸ‘π’™(π’™βˆ’πŸ)

14 Factoring out the GCF You Try! πŸ’ 𝒙 𝟐 βˆ’πŸ–π’™ 𝟐 𝒙 𝟐 βˆ’πŸ”π’™

15 βˆ’ 8 2x 3 𝒙 𝟐 βˆ’πŸ”π’™ 2x + 8 = 2(2xβˆ’4) x βˆ’4 2βˆ™π‘₯ βˆ’1βˆ™2βˆ™2βˆ™2 x βˆ’2 3βˆ™π‘₯βˆ™π‘₯
Factoring out the GCF Graphic Organizer x βˆ’4 2 βˆ’ 8 2x 2x + 8 = 2(2xβˆ’4) 2βˆ™π‘₯ βˆ’1βˆ™2βˆ™2βˆ™2 x βˆ’2 3x 3 𝒙 𝟐 βˆ’πŸ”π’™ πŸ‘π’™ 𝟐 βˆ’πŸ”π’™=πŸ‘π’™(π’™βˆ’πŸ) 3βˆ™π‘₯βˆ™π‘₯ βˆ’1βˆ™2βˆ™3βˆ™π‘₯

16 Factoring out the GCF

17 Factoring out the GCF

18 Multiplying Polynomials

19 Algebra Tiles or Area Model Multiplying Binomials
Multiplying Polynomials Graphic Organizer Algebra Tiles or Area Model (x + 1)(x + 2) x2 + 2x + x + 2 x + 2 x +1 x x x2 x +1 x2 x x x2 + 2x + x + 2 x2 + 3x + 2 + 1 x (x + 1)(x + 2) Multiplying Binomials 1 1 x2 + 3x + 2 Mnemonic Device: FOIL Mnemonic devicesΒ a device such as a pattern of letters, ideas, or associations that assists in remembering something. A mnemonic device is a memory aid and an acronym is a mnemonic technique.Β  F +O +I +L (x + 1)(x + 2) x2 + 2x + x + 2 x2 + 3x + 2

20 Factor by Grouping π‘₯ 2 +2π‘₯+π‘₯+2 ( π‘₯ 2 +2π‘₯) +x+2 π‘₯ π‘₯+2 +1 π‘₯+2 (π‘₯+1) π‘₯+2
Checking your work Factor by Grouping π‘₯ 2 +2π‘₯+π‘₯+2 ( π‘₯ 2 +2π‘₯) +x+2 π‘₯ π‘₯+2 +1 π‘₯+2 (π‘₯+1) π‘₯+2

21 Algebra Tiles or Area Model
Multiplying Polynomials Algebra Tiles or Area Model Graphic Organizer (x + 2)( x + 3) x2 + 2x + 3x + 6 x + 2 x +1 x +1 x2 x x x x x2 + 3 x 1 1 x 1 1 x2 + 5x + 6 x 1 1 x2 + 3x + 2x + 6 Algebra tiles make a rectangle…opposite sides are congruent x2 + 5x + 6

22 Factor by Grouping π‘₯ 2 +3π‘₯+2π‘₯+6 ( π‘₯ 2 +3π‘₯) +2x+6 π‘₯ π‘₯+3 +2 π‘₯+3
Checking your work Factor by Grouping π‘₯ 2 +3π‘₯+2π‘₯+6 ( π‘₯ 2 +3π‘₯) +2x+6 π‘₯ π‘₯+3 +2 π‘₯+3 (π‘₯+2) π‘₯+3

23 Multiplying Polynomials
You Try! π‘₯+4 (π‘₯+1)

24 Algebra Tiles or Area Model
Multiplying Polynomials Algebra Tiles or Area Model Graphic Organizer (x – 3)(x + 1) x2 +x -3x -3 x + 1 x +1 x x x2 -x -1 x x2 x - 3 -x -1 -x -1 x2 – 2x – 3 -x -1 x2 – 3x + x βˆ’ 3 x2 – 2x – 3

25 Factor by Grouping π‘₯ 2 βˆ’3π‘₯+π‘₯βˆ’3 ( π‘₯ 2 βˆ’3π‘₯) +π‘₯βˆ’3 π‘₯ π‘₯βˆ’3 +1 π‘₯βˆ’3 (π‘₯+1) π‘₯βˆ’3
Checking your work Factor by Grouping π‘₯ 2 βˆ’3π‘₯+π‘₯βˆ’3 ( π‘₯ 2 βˆ’3π‘₯) +π‘₯βˆ’3 π‘₯ π‘₯βˆ’3 +1 π‘₯βˆ’3 (π‘₯+1) π‘₯βˆ’3

26 Multiplying Polynomials
You Try! π‘₯βˆ’4 (π‘₯+1) π‘₯+4 (π‘₯βˆ’1)

27 Algebra Tiles Make a Rectangle
x x + 1 x + 1 x x + 3 x + 3 x x

28 Algebra Tiles or Area Model
Multiplying Polynomials Algebra Tiles or Area Model Graphic Organizer (x – 3)(x – 3) x2 -3x -9 x - 3 x -1 x -x x2 x -1 x x2 -x -x -x - 3 -x 1 -x x2 – 6x + 9 -x x2 – 6x + 9 This trinomial is also a Perfect Square. By definition, a square has all sides equal. (x – 3)2

29 You Try! π‘₯βˆ’4 (π‘₯βˆ’1) π‘₯βˆ’3 (π‘₯βˆ’2) Draw the algebra tiles
Multiplying Polynomials Draw the algebra tiles You Try! π‘₯βˆ’4 (π‘₯βˆ’1) π‘₯βˆ’3 (π‘₯βˆ’2)

30 Multiplying Polynomials
Trinomials must and terms with exponents higher than 3 must be done using the graphic organizer not algebra tiles.

31 Factoring Polynomials

32 π‘₯ 2 +5π‘₯+6 Now arrange them to make a rectangle x2 x 1 1 1 1 1 1
Factoring Polynomials π‘₯ 2 +5π‘₯+6 1 1 x2 x 1 1 1 1 Now arrange them to make a rectangle

33 Factoring Polynomials
Graphic Organizer x x2 + 2x + 3x + 6 x +2 x +1 x + 3 x +1 x2 x x x x2 x +3 x 1 1 x 1 1 x 1 1 (𝒙+𝟐)(𝒙+πŸ‘) (𝒙+𝟐)(𝒙+πŸ‘)

34 Factor by Grouping π‘₯ 2 +3π‘₯+2π‘₯+6 ( π‘₯ 2 +3π‘₯) +2x+6 π‘₯ π‘₯+3 +2 π‘₯+3
Alternate Route x2 + 2x + 3x + 6 ? ? ? ? Factor by Grouping π‘₯ 2 +3π‘₯+2π‘₯+6 ( π‘₯ 2 +3π‘₯) +2x+6 π‘₯ π‘₯+3 +2 π‘₯+3 (π‘₯+2) π‘₯+3

35 Factoring Polynomials
You Try! 𝒙 𝟐 +πŸ”π’™+πŸ– (𝒙+𝟐)(𝒙+πŸ’)

36 𝒙 𝟐 +πŸ”π’™+πŸ– 𝒙 𝟐 ?𝒙 +πŸ–

37 Factoring Polynomials
π‘₯ 2 βˆ’4 x2 -1 -1 -1 -1 Now arrange them to make a square

38 Factoring Polynomials
π‘₯ 2 βˆ’4 Remember there were no middle terms … x2 -x x -1 -1 Use zero pairs! -1 -1 4 empty spaces = 2 zero pairs Graphic Organizer x x -1 x2 -2x +2x -4 x -x x -2 π‘₯ 2 βˆ’4 (x-2)(x+2) +1 x x2 -x x + 2 x x2 x x -1 -1 +2 -1 -1

39 Now try to arrange them to make a rectangle
Factoring Polynomials 𝒙 𝟐 +π’™βˆ’πŸ” Now try to arrange them to make a rectangle -1 -1 x2 x -1 -1 -1 -1 x2 x2 x2 x x x -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 When you have an even number of x’s missing use zero pairs

40 x -x x -x x -x x2 -1 x x x2 -1 x x -x x2 -1 x -x -x -x x

41 Algebra Tiles or Area Model
Factoring Polynomials Algebra Tiles or Area Model Graphic Organizer 𝒙 𝟐 +π’™βˆ’πŸ” x2 +3x -2x -6 x +3 x 1 x2 x -x x -1 x x2 x x x -2 -x 1 -x (x – 2)(x + 3)

42 Factor by Grouping π‘₯ 2 +3π‘₯βˆ’2π‘₯βˆ’6 ( π‘₯ 2 +3π‘₯) βˆ’2xβˆ’6 π‘₯ π‘₯+3 βˆ’2 π‘₯+3
Alternate Route x2 βˆ’ 2x + 3x + 6 ? ? ? Factor by Grouping π‘₯ 2 +3π‘₯βˆ’2π‘₯βˆ’6 ( π‘₯ 2 +3π‘₯) βˆ’2xβˆ’6 π‘₯ π‘₯+3 βˆ’2 π‘₯+3 (π‘₯βˆ’2) π‘₯+3 ?

43 𝒙 𝟐 βˆ’πŸ— 𝒙 𝟐 +πŸπ’™βˆ’πŸ– You Try! (π’™βˆ’πŸ‘)(𝒙+πŸ‘) (π’™βˆ’πŸ)(𝒙+πŸ’) (π’™βˆ’πŸ)(𝒙+πŸ’)
Factoring Polynomials You Try! 𝒙 𝟐 βˆ’πŸ— 𝒙 𝟐 +πŸπ’™βˆ’πŸ– (π’™βˆ’πŸ‘)(𝒙+πŸ‘) (π’™βˆ’πŸ)(𝒙+πŸ’) (π’™βˆ’πŸ)(𝒙+πŸ’)

44 𝒙 𝟐 +πŸ‘π’™=πŸ’ Now try to arrange them to make a rectangle x2 x x x x2 x2 x
Factoring Polynomials 𝒙 𝟐 +πŸ‘π’™=πŸ’ Now try to arrange them to make a rectangle -1 -1 x2 x x -1 -1 x +1 x x2 Not an even number of missing x’s… can’t use zero pair -1 x x2 x x -1 -1 -x -1 -1 -1 -1 -1 -1 x When you have an even number of x’s missing use zero pairs (𝒙+πŸ’)(π’™βˆ’πŸ)

45 𝒙 𝟐 βˆ’πŸ“π’™=πŸ” You Try! Draw the algebra tiles (π’™βˆ’πŸ”)(𝒙+𝟏)
Factoring Polynomials Draw the algebra tiles You Try! 𝒙 𝟐 βˆ’πŸ“π’™=πŸ” (π’™βˆ’πŸ”)(𝒙+𝟏)

46 Factoring Polynomials
πŸπ’™ 𝟐 +πŸ“π’™=πŸ‘ πŸπ’™ 𝟐 +πŸ“π’™βˆ’πŸ‘=𝟎 x2 x2 x x x x x -1 -1 -1

47 x πŸπ’™ 𝟐 +πŸ”π’™ βˆ’πŸπ’™ βˆ’πŸ‘ x x2 x x x x2 x x x x- πŸπ’™ 𝟐 +πŸ“π’™βˆ’πŸ‘=𝟎 πŸπ’™βˆ’πŸ=𝟎 𝒙+πŸ‘=𝟎
Factoring Polynomials x + 3 x x +1 +1 +1 + 3 πŸπ’™ 𝟐 +πŸ”π’™ βˆ’πŸπ’™ βˆ’πŸ‘ 2x x x2 x x x 2x βˆ’ 1 x2 x x x X+ -1 -1 x- -1 -1 -1 πŸπ’™ 𝟐 +πŸ“π’™βˆ’πŸ‘=𝟎 (πŸπ’™βˆ’πŸ)(𝒙+πŸ‘) πŸπ’™βˆ’πŸ=𝟎 𝒙+πŸ‘=𝟎 𝒙= 𝟏 𝟐 𝐱=βˆ’πŸ‘

48 πŸπ’™ 𝟐 +πŸ”π’™ βˆ’πŸπ’™ βˆ’πŸ‘ Factor by Grouping 2 π‘₯ 2 +6π‘₯βˆ’1π‘₯βˆ’3 ( 2π‘₯ 2 +6π‘₯) βˆ’1xβˆ’3
? ? Alternate Route πŸπ’™ 𝟐 +πŸ”π’™ βˆ’πŸπ’™ βˆ’πŸ‘ ? Factor by Grouping 2 π‘₯ 2 +6π‘₯βˆ’1π‘₯βˆ’3 ( 2π‘₯ 2 +6π‘₯) βˆ’1xβˆ’3 2π‘₯ π‘₯+3 βˆ’1 π‘₯+3 (2π‘₯βˆ’1) π‘₯+3 ?

49 πŸπ’™ 𝟐 +πŸ“π’™βˆ’πŸ‘=𝟎 πŸπ’™ 𝟐 ?𝒙 βˆ’πŸ‘

50 You Try! Draw the algebra tiles πŸ‘π’™ 𝟐 +πŸ“π’™+𝟐 πŸ‘π’™ 𝟐 βˆ’πŸ“π’™βˆ’πŸ (πŸ‘π’™+𝟏)(𝒙+𝟐)
Factoring Polynomials Draw the algebra tiles You Try! πŸ‘π’™ 𝟐 +πŸ“π’™+𝟐 πŸ‘π’™ 𝟐 βˆ’πŸ“π’™βˆ’πŸ (πŸ‘π’™+𝟏)(𝒙+𝟐) (πŸ‘π’™+𝟏)(π’™βˆ’πŸ)

51 Completing the Square

52 Let’s make a square with
Completing the Square 8 2 𝒙 𝟐 +πŸ–π’™+ ____= (𝒙 ) 𝟐 16 4 𝒙+πŸ’ Let’s make a square with the given tiles x2 x x2 Now place the yellow tiles to complete the square! 8 tiles split into two groups When the yellow tiles are put into place, will be squared x x π‘₯ + 4 Since the length of each side is x+4, square it! 1 x 16 Yellow tiles

53 You Try! Draw the algebra tiles 𝒙 𝟐 +πŸ”π’™+ ____= (𝒙 + ) 𝟐
Factoring Polynomials Draw the algebra tiles You Try! 𝒙 𝟐 +πŸ”π’™+ ____= (𝒙 ) 𝟐 𝒙 𝟐 +πŸ”π’™+πŸ—= (𝒙 + πŸ‘ ) 𝟐 𝒙 𝟐 +πŸ•π’™+ ____= (𝒙 ) 𝟐 𝒙 𝟐 +πŸ•π’™+ πŸ’πŸ— πŸ’ = (𝒙 + πŸ• 𝟐 ) 𝟐

54 IN CONCLUSION By Department of Curriculum and Instruction/Mathematics

55 Correlated/Congruent Material
Correlated materials are needed but should only be a part of the lesson planning. Lessons must be designed so there is a congruent match to the targets, assessments, and learning activities. Teachers will find evidence of their designed lessons being congruent to the targets, assessments, and learning activities through student observations and student work. Content: Standards, Targets, Vocabulary consistent with the standard Rigor Facilitation: Students engage in content at appropriate cognitive level Students will demonstrate congruent work Teachers must always remember these key questions as they design congruent lessons: What will students learn? To what degree will they learn and to what depth/breadth? How will they acquire this learning? How will they demonstrate this learning?

56 Thank you for your time!


Download ppt "Algebra 1 Ongoing Support"

Similar presentations


Ads by Google