Presentation is loading. Please wait.

Presentation is loading. Please wait.

Objectives Use the Factor Theorem to determine factors of a polynomial. Factor the sum and difference of two cubes.

Similar presentations


Presentation on theme: "Objectives Use the Factor Theorem to determine factors of a polynomial. Factor the sum and difference of two cubes."— Presentation transcript:

1 Objectives Use the Factor Theorem to determine factors of a polynomial. Factor the sum and difference of two cubes.

2 Recall that if a number is divided by any of its factors, the remainder is 0. Likewise, if a polynomial is divided by any of its factors, the remainder is 0. The Remainder Theorem states that if a polynomial is divided by (x – a), the remainder is the value of the function at a. So, if (x – a) is a factor of P(x), then P(a) = 0.

3 Example 1: Determining Whether a Linear Binomial is a Factor
Determine whether the given binomial is a factor of the polynomial P(x). A. (x + 1); (x2 – 3x + 1) B. (x + 2); (3x4 + 6x3 – 5x – 10)

4 Check It Out! Example 1 Determine whether the given binomial is a factor of the polynomial P(x). a. (x + 2); (4x2 – 2x + 5) b. (3x – 6); (3x4 – 6x3 + 6x2 + 3x – 30)

5 Example 2: Factoring by Grouping
Factor: x3 – x2 – 25x + 25. (x3 – x2) + (–25x + 25) Group terms. Factor common monomials from each group. x2(x – 1) – 25(x – 1) Factor out the common binomial (x – 1). (x – 1)(x2 – 25) Factor the difference of squares. (x – 1)(x – 5)(x + 5)

6 Example 2 Continued Check Use the table feature of your calculator to compare the original expression and the factored form. The table shows that the original function and the factored form have the same function values. 

7 Check It Out! Example 2a Factor: x3 – 2x2 – 9x + 18. (x3 – 2x2) + (–9x + 18) Group terms. Factor common monomials from each group. x2(x – 2) – 9(x – 2) Factor out the common binomial (x – 2). (x – 2)(x2 – 9) Factor the difference of squares. (x – 2)(x – 3)(x + 3)

8 Check It Out! Example 2a Continued
Check Use the table feature of your calculator to compare the original expression and the factored form. The table shows that the original function and the factored form have the same function values. 

9 Check It Out! Example 2b Factor: 2x3 + x2 + 8x + 4. (2x3 + x2) + (8x + 4) Group terms. Factor common monomials from each group. x2(2x + 1) + 4(2x + 1) Factor out the common binomial (2x + 1). (2x + 1)(x2 + 4) (2x + 1)(x2 + 4)

10 Just as there is a special rule for factoring the difference of two squares, there are special rules for factoring the sum or difference of two cubes.

11 Example 3A: Factoring the Sum or Difference of Two Cubes
Factor the expression. 4x x 4x(x3 + 27) Factor out the GCF, 4x. 4x(x3 + 33) Rewrite as the sum of cubes. Use the rule a3 + b3 = (a + b)  (a2 – ab + b2). 4x(x + 3)(x2 – x  ) 4x(x + 3)(x2 – 3x + 9)

12 Example 3B: Factoring the Sum or Difference of Two Cubes
Factor the expression. 125d3 – 8 Rewrite as the difference of cubes. (5d)3 – 23 (5d – 2)[(5d)2 + 5d  ] Use the rule a3 – b3 = (a – b)  (a2 + ab + b2). (5d – 2)(25d2 + 10d + 4)

13 Check It Out! Example 3a Factor the expression. 8 + z6 Rewrite as the difference of cubes. (2)3 + (z2)3 (2 + z2)[(2)2 – 2  z + (z2)2] Use the rule a3 + b3 = (a + b)  (a2 – ab + b2). (2 + z2)(4 – 2z + z4)

14 Check It Out! Example 3b Factor the expression. 2x5 – 16x2 2x2(x3 – 8) Factor out the GCF, 2x2. Rewrite as the difference of cubes. 2x2(x3 – 23) Use the rule a3 – b3 = (a – b)  (a2 + ab + b2). 2x2(x – 2)(x2 + x  ) 2x2(x – 2)(x2 + 2x + 4)

15 Example 4: Geometry Application
The volume of a plastic storage box is modeled by the function V(x) = x3 + 6x2 + 3x – 10. Identify the values of x for which V(x) = 0, then use the graph to factor V(x). V(x) has three real zeros at x = –5, x = –2, and x = 1. If the model is accurate, the box will have no volume if x = –5, x = –2, or x = 1.

16 Example 4 Continued The corresponding factors are (x – 1) (x +2) (x + 5) . V(x)= (x – 1)(x + 2)(x + 5) Factor the quadratic.

17 Check It Out! Example 4 The volume of a rectangular prism is modeled by the function V(x) = x3 – 8x2 + 19x – 12, which is graphed below. Identify the values of x for which V(x) = 0, then use the graph to factor V(x). V(x) has three real zeros at x = 1, x = 3, and x = 4. If the model is accurate, the box will have no volume if x = 1, x = 3, or x = 4.

18 Check It Out! Example 4 Continued
One corresponding factor is (x – 1) (x – 3) (x – 4) . V(x)= (x – 1)(x – 3)(x – 4) Factor the quadratic.


Download ppt "Objectives Use the Factor Theorem to determine factors of a polynomial. Factor the sum and difference of two cubes."

Similar presentations


Ads by Google