Download presentation
Presentation is loading. Please wait.
1
7-4: special right triangles
Geometry Chapter 7 7-4: special right triangles
2
Warm-Up Simplify the following. 1.) 10 × 30 2.) 45 5
1.) 10 × ) 3.) ) 3 × 27
3
Special Right Triangles
Objective: Students will be able to use the relationships amongst the sides in special right triangles to find side lengths. Agenda 45°−45°−90° Triangles 30°−60°−90° Triangles Examples
4
45°−45°−90° Triangles Definition
A 45°−45°−90° Triangle is an isosceles right Triangle, with 45° as the measures of both the other two angles. 45° Hypotenuse Leg
5
45°−45°−90° Triangles Definition
A 45°−45°−90° Triangle is an isosceles right Triangle, with 45° as the measures of both the other two angles. Knowledge Connection Both Legs in this triangle are congruent. 45° Hypotenuse Leg
6
45°−45°−90° Theorem 𝐻𝑦𝑝=𝐿𝑒𝑔 × 2
Theorem 7.8: In a 45°−45°−90° right triangle, the hypotenuse is times as long as a leg. 45° 𝒄 𝒂 𝒃 Hypotenuse Leg 𝐻𝑦𝑝=𝐿𝑒𝑔 × 2
7
45°−45°−90° Examples Find the value of x.
8
45°−45°−90° Examples Find the value of x. Leg 45° Hypotenuse
9
45°−45°−90° Examples Find the value of x. 45° Solution: 𝐻𝑦𝑝=𝐿𝑒𝑔 × 2
Leg Solution: 𝐻𝑦𝑝=𝐿𝑒𝑔 × 2 𝑥=12× 2 𝒙=𝟏𝟐 𝟐 45° Hypotenuse
10
45°−45°−90° Examples Find the value of x.
11
45°−45°−90° Examples Find the value of x. 45° Solution: 𝐻𝑦𝑝=𝐿𝑒𝑔 × 2
𝐻𝑦𝑝=𝐿𝑒𝑔 × 2 8=x× 2 Leg Hypotenuse
12
45°−45°−90° Examples Find the value of x. 45° Solution: 𝐻𝑦𝑝=𝐿𝑒𝑔 × 2
𝐻𝑦𝑝=𝐿𝑒𝑔 × 2 8=x× 2 𝑥= × = 𝒙=𝟒 𝟐 Leg Hypotenuse
13
45°−45°−90° Examples Find the values of x and y.
14
45°−45°−90° Examples Find the value of x and y. Hypotenuse 45° Leg Leg
15
45°−45°−90° Examples Find the value of x and y. 45° For x: 𝐻𝑦𝑝=𝐿𝑒𝑔 × 2
𝐻𝑦𝑝=𝐿𝑒𝑔 × 2 2 6 =x× 2 𝑥= 𝒙=𝟐 𝟑 Hypotenuse 45° Leg Leg
16
45°−45°−90° Examples Find the value of x and y. 45° For x: 𝐻𝑦𝑝=𝐿𝑒𝑔 × 2
Hypotenuse For x: 𝐻𝑦𝑝=𝐿𝑒𝑔 × 2 2 6 =x× 2 𝑥= 𝒙=𝟐 𝟑 For y: In a 45°−45°−90° triangle, the Legs have the same length. Therefore, 𝒚=𝟐 𝟑 45° Leg Leg
17
45°−45°−90° Examples Find the value of x. 𝟖 𝒙
18
45°−45°−90° Examples Find the value of x. 𝟖 𝒙 Hypotenuse Leg Leg
19
45°−45°−90° Examples Find the value of x. 𝒙 𝟖 For x: 𝐻𝑦𝑝=𝐿𝑒𝑔 × 2
𝐻𝑦𝑝=𝐿𝑒𝑔 × 2 𝑥=8× 2 𝒙=𝟖 𝟐 𝟖 𝒙 Hypotenuse Leg Leg
20
30°−60°−90° Triangles Definition
A 30°−60°−90° is a right triangle with 30° and 60° as its other angle measures. Shorter Leg Longer Leg Hypotenuse
21
30°−60°−90° Triangles Definition
A 30°−60°−90° is a right triangle with 30° and 60° as its other angle measures. Knowledge Connection The leg Opposite the 30° angle is called the Shorter Leg. The Leg Opposite the 60° angle is called the Longer Leg. Shorter Leg Longer Leg Hypotenuse
22
30°−60°−90° Theorem 𝐻𝑦𝑝=𝑆.𝐿. ×2 𝐿.𝐿. =𝑆.𝐿. × 3
Theorem 7-9: In a 30°−60°−90° right triangle, the hypotenuse is twice as long as the shorter leg, and the longer leg is 3 times as long as a shorter leg. 𝒄 𝒂 𝒃 Shorter Leg Longer Leg Hypotenuse 𝐻𝑦𝑝=𝑆.𝐿. ×2 𝐿.𝐿. =𝑆.𝐿. × 3
23
30°−60°−90° Examples Find the values of x and y.
24
30°−60°−90° Examples Find the values of x and y. Shorter Leg
Longer Leg Hypotenuse
25
30°−60°−90° Examples Find the values of x and y. For x: 𝐻𝑦𝑝=𝑆.𝐿. ×2
𝐻𝑦𝑝=𝑆.𝐿. ×2 𝑥=6×2 𝒙=𝟏𝟐 Shorter Leg Longer Leg Hypotenuse
26
30°−60°−90° Examples Find the values of x and y. For x: 𝐻𝑦𝑝=𝑆.𝐿. ×2
𝐻𝑦𝑝=𝑆.𝐿. ×2 𝑥=6×2 𝒙=𝟏𝟐 Shorter Leg Longer Leg For y: 𝐿.𝐿. =𝑆.𝐿. × 3 𝑦=6× 3 𝒚=𝟔 𝟑 Hypotenuse
27
30°−60°−90° Examples Find the values of x and y. 𝒙 𝒚 𝟐𝟎 𝟔𝟎°
28
30°−60°−90° Examples Find the values of x and y. 𝒚 𝒙 𝟐𝟎 𝟔𝟎° Longer Leg
Shorter Leg Hypotenuse
29
30°−60°−90° Examples Find the values of x and y. 𝒚 𝒙 𝟐𝟎 𝟔𝟎° For x:
𝐻𝑦𝑝=𝑆.𝐿. ×2 20=2x 𝒙=𝟏𝟎 Longer Leg 𝒙 𝒚 𝟐𝟎 𝟔𝟎° Shorter Leg Hypotenuse
30
30°−60°−90° Examples Find the values of x and y. 𝒚 𝒙 𝟐𝟎 𝟔𝟎° For x:
𝐻𝑦𝑝=𝑆.𝐿. ×2 20=2x 𝒙=𝟏𝟎 For y: 𝐿.𝐿. =𝑆.𝐿. × 3 𝑦=10× 3 𝒚=𝟏𝟎 𝟑 Longer Leg 𝒙 𝒚 𝟐𝟎 𝟔𝟎° Shorter Leg Hypotenuse
31
30°−60°−90° Examples Find the values of x and y.
32
30°−60°−90° Examples Find the values of x and y. Shorter Leg
Longer Leg Hypotenuse
33
30°−60°−90° Examples Find the values of x and y. For x: 𝐿.𝐿. =𝑆.𝐿. × 3
𝐿.𝐿. =𝑆.𝐿. × 3 8=x 3 𝑥= 8 3 𝑥= × = 𝟖 𝟑 𝟑 Shorter Leg Longer Leg Hypotenuse
34
30°−60°−90° Examples Find the values of x and y. For x: 𝐿.𝐿. =𝑆.𝐿. × 3
𝐿.𝐿. =𝑆.𝐿. × 3 8=x 3 𝑥= 8 3 𝑥= ∗ = 𝟖 𝟑 𝟑 For y: 𝐻𝑦𝑝=𝑆.𝐿. ×2 𝑦=𝑥×2 𝑦=2× 𝒚= 𝟏𝟔 𝟑 𝟑 Shorter Leg Longer Leg Hypotenuse
35
30°−60°−90° Examples Find the values of x and y. 𝟔 𝒙 𝟑
36
30°−60°−90° Examples Find the values of x and y. 𝟔 𝒙 𝟑 Hypotenuse
Longer Leg Shorter Leg
37
30°−60°−90° Examples Find the values of x and y. 𝟔 𝒙 𝟑 For x:
𝐿.𝐿. =𝑆.𝐿. × 3 x=3× 3 𝒙=𝟑 𝟑 𝟔 𝒙 𝟑 Hypotenuse Longer Leg Shorter Leg
38
Final Practice: Both Triangles
Find the values of the variables in the given diagram. For u: 𝐻𝑦𝑝=𝐿𝑒𝑔 × 2 8 2 =u× 2 𝑢= 𝒖=𝟖 For v: In a 45°−45°−90° triangle, the Legs have the same length. Therefore, 𝐯=𝟖
39
Final Practice: Both Triangles
Find the values of the variables in the given diagram. 𝒏 𝒎 𝟏𝟎 𝟒𝟓° For m: 𝐻𝑦𝑝=𝐿𝑒𝑔 × 2 10 =m× 2 𝑚= 𝒎= 𝟓 For n: In a 45°−45°−90° triangle, the Legs have the same length. Therefore, 𝐧= 𝟓
40
Final Practice: Both Triangles
Find the values of the variables in the given diagram. For a: 𝐻𝑦𝑝=𝐿𝑒𝑔 × 2 𝑎=2 2 × 2 𝑎=2(2) 𝒂=𝟒 For b: In a 45°−45°−90° triangle, the Legs have the same length. Therefore, 𝐛=𝟐 𝟐
41
Final Practice: Both Triangles
Find the values of the variables in the given diagram. For u: 𝐻𝑦𝑝=𝑆.𝐿. ×2 u=2×2 𝒖=𝟒 For v: 𝐿.𝐿. =𝑆.𝐿. × 3 𝑦=2× 3 𝒚=𝟐 𝟑
42
Final Practice: Both Triangles
Find the values of the variables in the given diagram. For y: 𝐿.𝐿. =𝑆.𝐿. × 3 𝑦=4 5 × 3 𝒚=𝟒 𝟏𝟓 For y: 𝐻𝑦𝑝=𝑆.𝐿. ×2 8 5 =2y 𝒚=𝟒 𝟓
43
Final Practice: Both Triangles
Find the values of the variables in the given diagram. For b: 𝐿.𝐿. =𝑆.𝐿. × 3 11 3 =𝑏× 3 𝑏= 𝒃=𝟏𝟏 For a: 𝐻𝑦𝑝=𝑆.𝐿. ×2 a=11×2 𝒂=𝟐𝟐
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.