Download presentation
Presentation is loading. Please wait.
Published byDaniela Melsbach Modified over 5 years ago
1
High mobility transparent conducting oxide coatings prepared by magnetron sputtering for flexible solar cell applications Stella M. VAN EEK1, Xia YAN2, Krishanu DEY2, Sascha KREHER1, Reinhard FENDLER1, Armin G. ABERLE2 and Selvaraj VENKATARAJ2
2
FHR Anlagenbau GmbH Headquarter near the city of Dresden, Germany Office rooms and more than 6,000 sqm assembling spaces Dresden Dr. Stella Van Eek AIMCAL USA © FHR Anlagenbau GmbH
3
Magnetron sputtering of TCO´s layer stack
Outline Introduction TCO for solar cells Experiment Magnetron sputtering of TCO´s layer stack Optical and electrical properties Comparison with ITO Thermal stability Perspectives Conclusions Dr. Stella Van Eek AIMCAL USA © FHR Anlagenbau GmbH
4
Thin Film Technologies
PV - Technologies CI(G)S, CdTe Thin Film Technologies Monocrystaline Silicon Polycrystalline Silicon Wafer Technologies Efficiency records 26% 22% 22,6 % - 22,1% 12,1% - 22,7% OPV & Perovskites FHR is supplying R&D and production tools to cover all these technologies Dr. Stella Van Eek AIMCAL USA © FHR Anlagenbau GmbH
5
Front foil / Barrier / Encapsulant
Example of PV flexible layer stack Focus on Transparent Conducting Oxide Sun Front foil / Barrier / Encapsulant 0.6 mm ~0.1 µm TCO (ITO) Absorber < 2.0 µm 0.5 µm Metal contact (Al … ) Dr. Stella Van Eek AIMCAL USA © FHR Anlagenbau GmbH
6
TCO requirements for flexible cells
Electrical properties: Low Sheet resistance (Rsh < 10 ohm/sq) Optical properties High transmittance (TL>80%) Aesthetic colors (Neutral color for BIPV-Building-integrated photovoltaics ) Mechanical properties Good adhesion on glass, foil etc. Compatibility with solar cell fabrication process Temperature (< 150 ºC) No delamination / Long term durability / flexibility Low cost potential Simple manufacturing Easily available materials Dr. Stella Van Eek AIMCAL USA © FHR Anlagenbau GmbH
7
Electrical conductivity σ σ = n * e * µ
Higher electrical conductivity Higher carrier concentration (n) Higher mobility () Increased ionized impurity scattering Mobility degradation High plasma frequency (Drude Model) Lower plasma wavelength Smaller window of transmission Crystalline quality Grain boundary scattering Need to compromise in carrier concentration Dr. Stella Van Eek AIMCAL USA © FHR Anlagenbau GmbH Page 7
8
Solar Irradiance spectrum
Effect of carrier concentration on the transmittance for example :AZO Solar Irradiance spectrum Band gap shift Near infrared Dr. Stella Van Eek AIMCAL USA © FHR Anlagenbau GmbH
9
Periodic table of the elements
Transition metal dopants (W, Ti, Mo, Nb etc.) have been found to induce high mobility in indium oxide Dr. Stella Van Eek AIMCAL USA © FHR Anlagenbau GmbH
10
TCO overview Conventional ITO vs high mobility TCOs
Tin-doped indium oxide (ITO) O-vacancies (VO) → free electrons Sn4+ substitutes In3+ position → one free electron Electrically inactive dopants (interstitial Sn4+) → no free electron In2O3:SnO2 = 90:10 wt% Mobility: 20 – 40 cm2/Vs Titanium-doped indium oxide (Ti:InOx) FHR-SERIS R&D Ti4+ substitutes In3+ position → one free electron Almost every dopant is active In2O3:TiO2 = 99:1 wt% Mobility > 50 cm2/Vs (as deposited 150 C) C2 site (24 sites in unit cell) Substitutional position S6 site (8) Tin occupation b and d sites Dr. Stella Van Eek AIMCAL USA © FHR Anlagenbau GmbH
11
Results - Production stability
Industrial Roll to Roll fabrication of PV and LOW-E thin films Results - Production stability TCO e.g. for PV Application, Touch panel TCO down web resistivity +-5% nonuniformity Constant process Parameters Gray curve [1] TCO down web resistivity +-3% nonuniformity with runtime dependent parameter change Red curve [1] S. Kreher, Dr. S.M. Van Eek, ITO processes for display and touch panel applications - SVC TechCon Proceedings (2016) Measured inline (eddy current) and off line (4 point probe) Dr. Stella Van Eek AIMCAL USA © FHR Anlagenbau GmbH
12
TCO transmittance comparison Sputter-deposited Ti:InOx FHR-SERIS R&D
Dr. Stella Van Eek AIMCAL USA © FHR Anlagenbau GmbH
13
Reduced NIR parasitic absorption (Ti:InOx)
TCO transmittance comparison Sputter-deposited Ti:InOx vs. ITO FHR-SERIS R&D Reduced NIR parasitic absorption (Ti:InOx) T > 75% in 1000–1500 nm range T MAX >88% Dr. Stella Van Eek AIMCAL USA © FHR Anlagenbau GmbH
14
Smooth surface morphologies (Ti:InOx)
TCOs surface morphology Sputter-deposited Ti:InOx vs. ITO Smooth surface morphologies (Ti:InOx) Similar grain and roughness as ITO Smoother surface compared to AZO Dr. Stella Van Eek AIMCAL USA © FHR Anlagenbau GmbH
15
Roll-to-roll type equipment schematics
FHR’s Large area deposition systems (Magnetron sputter system for R&D and production) Roll-to-roll type equipment schematics Dr. Stella Van Eek AIMCAL USA © FHR Anlagenbau GmbH
16
FHR’s Large area deposition systems
(Magnetron sputter system for R&D and production) Batch system for up to 900 mm coil diameter: for 23 μm foil 27 km long. Rotary and planar cathodes. Plasma pretreatment. Dr. Stella Van Eek AIMCAL USA © FHR Anlagenbau GmbH
17
Reduced NIR parasitic absorption (Ti:InOx)
The Thin Film Company Conclusions Reduced NIR parasitic absorption (Ti:InOx) Very high transmission over full spectral range demonstrated with Ti doping in In2O3 Next Steps: Preparation of test solar cells adjusting process parameters for obtaining best efficiency Dr. Stella Van Eek AIMCAL USA © FHR Anlagenbau GmbH
18
Research collaboration
This work was done under agreement within the research collaboration between the National University of Singapore and FHR Dr. Stella Van Eek AIMCAL USA © FHR Anlagenbau GmbH
19
FHR Anlagenbau GmbH Germany www.fhr.de Contact details
The Thin Film Company Contact details FHR Anlagenbau GmbH Germany Dr. Stella Van Eek AIMCAL USA © FHR Anlagenbau GmbH
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.