Presentation is loading. Please wait.

Presentation is loading. Please wait.

Physics 321 Hour 31 Euler’s Angles.

Similar presentations


Presentation on theme: "Physics 321 Hour 31 Euler’s Angles."β€” Presentation transcript:

1 Physics 321 Hour 31 Euler’s Angles

2 Space and Body Coordinates
𝑒 3 𝑧 𝑒 2 𝑦 π‘₯ 𝑒 1 Body coordinates are on principal axes If possible, use c.m. as origin in both frames If not possible, c.m. motion is easy

3 Euler’s Equations – No Torques
𝐼 11 πœ” 1 = 𝐼 22 βˆ’ 𝐼 33 πœ” 2 πœ” 3 𝐼 22 πœ” 2 = 𝐼 33 βˆ’ 𝐼 11 πœ” 3 πœ” 1 𝐼 33 πœ” 3 = 𝐼 11 βˆ’ 𝐼 22 πœ” 1 πœ” 2

4 Euler’s Equations – No Torques, I11=I22
𝐼 11 πœ” 1 = 𝐼 11 βˆ’ 𝐼 33 πœ” 2 πœ” 3 𝐼 22 πœ” 2 = 𝐼 33 βˆ’ 𝐼 11 πœ” 3 πœ” 1 𝐼 33 πœ” 3 =0 πœ” 3 is a constant πœ” 1 = 𝐼 11 βˆ’ 𝐼 33 𝐼 11 πœ” 2 πœ” 3 ≑ Ξ© 𝑏 πœ” 2 πœ” 2 =βˆ’ 𝐼 11 βˆ’ 𝐼 33 𝐼 11 πœ” 3 πœ” 1 ≑ βˆ’Ξ© 𝑏 πœ” 1 πœ” 2 =βˆ’ Ξ© 𝑏 πœ” 1 =βˆ’ Ξ© 𝑏 2 πœ” 2

5 Euler’s Equations – No Torques, I11=I22 In the body axes:
πœ” = πœ” 0 cos Ξ© 𝑏 𝑑 βˆ’ πœ” 0 sin Ξ© 𝑏 𝑑 πœ” 3 𝐿 = 𝐼 11 πœ” 0 cos Ξ© 𝑏 𝑑 βˆ’ 𝐼 11 πœ” 0 sin Ξ© 𝑏 𝑑 𝐼 33 πœ” 3

6 In the space axes: Ξ© 𝑠 = 𝐿 𝐼 11
Ξ© 𝑠 = 𝐿 𝐼 11 πœ” = πœ” 0 sin Ξ± cos Ξ© 𝑠 𝑑 πœ” 0 sin 𝛼 sin Ξ© 𝑠 𝑑 πœ” 0 cos 𝛼 𝑒 3 = sin πœƒ cos Ξ© 𝑠 𝑑 sin πœƒ sin Ξ© 𝑠 𝑑 cos πœƒ Prolate object: Ξ©b<0, Ξ©s>0

7 Example football.nb

8 Constants of the Motion, No Torque
𝐿 = 𝐼 11 πœ” 0 cos Ξ© 𝑏 𝑑 βˆ’ 𝐼 11 πœ” 0 sin Ξ© 𝑏 𝑑 𝐼 33 πœ” 3 in body, has constant length Ξ© 𝑏 = 𝐼 11 βˆ’ 𝐼 33 𝐼 11 πœ” 3 πœ” 3 is constant 𝐿 in space is constant 𝐿 𝑧 is constant cos πœƒ= 𝐿 𝑧 /𝐿 so ΞΈ is constant cos 𝛼= πœ” 𝑧 /πœ” so Ο‰ is constant

9 Example HW31 Answers.nb

10 Unit Vectors 𝑒 β€² 3 = 𝑒 3 = sin πœƒ cos πœ‘ π‘₯ + sin πœƒ sin πœ‘ 𝑦 + cos πœƒ 𝑧
𝑒 β€² 1 = cos πœƒ cos πœ‘ π‘₯ + cos πœƒ sin πœ‘ 𝑦 βˆ’ sin πœƒ 𝑧

11 Angular Velocities πœ“ is spin about the body 3-axis
πœƒ is tipping of the body 3-axis πœ‘ is precession about the space z-axis πœ” = πœ‘ 𝑧 + πœƒ 𝑒 β€² 2 + ψ 𝑒 3 𝑧 = 𝑒 3 cos πœƒ βˆ’ 𝑒 β€² 1 sin πœƒ πœ” =βˆ’ πœ‘ sin πœƒ 𝑒 β€² 1 + πœƒ 𝑒 β€² 2 +( ψ + πœ‘ cos πœƒ ) 𝑒 β€² 3

12 Angular Momentum 𝐿 =βˆ’ 𝐼 11 πœ‘ sin πœƒ 𝑒 β€² 1 + 𝐼 22 πœƒ 𝑒 β€² 2
+ 𝐼 33 ( ψ + πœ‘ cos πœƒ ) 𝑒 β€² 3 𝐿 3 = 𝐼 33 ψ + πœ‘ cos πœƒ 𝐿 𝑧 = 𝐿 βˆ™ 𝑧 = 𝐼 11 πœ‘ sin 2 πœƒ+ 𝐿 3 cos πœƒ β†’ πœ‘ = 𝐿 𝑧 βˆ’ 𝐿 3 cos πœƒ 𝐼 11 sin 2 πœƒ For torque-free systems, Lz and L3 are constants, so πœ‘ is also constant.

13 Kinetic Energy 𝑇= 1 2 𝐼 11 πœ” 1 2 + 1 2 𝐼 22 πœ” 2 2 + 1 2 𝐼 33 πœ” 3 2
𝑇= 1 2 𝐼 11 πœ” 𝐼 22 πœ” 𝐼 33 πœ” 3 2 = 1 2 𝐼 πœ‘ 2 sin 2 πœƒ+ πœƒ 𝐼 ψ + πœ‘ cos πœƒ 2


Download ppt "Physics 321 Hour 31 Euler’s Angles."

Similar presentations


Ads by Google