Download presentation
Presentation is loading. Please wait.
Published byΞΟΞ½ΞΉΞΌΞΏΟ ΞΞΉΞ¬ΟΞ·Ο Modified over 6 years ago
1
Physics 321 Hour 31 Eulerβs Angles
2
Space and Body Coordinates
π 3 π§ π 2 π¦ π₯ π 1 Body coordinates are on principal axes If possible, use c.m. as origin in both frames If not possible, c.m. motion is easy
3
Eulerβs Equations β No Torques
πΌ 11 π 1 = πΌ 22 β πΌ 33 π 2 π 3 πΌ 22 π 2 = πΌ 33 β πΌ 11 π 3 π 1 πΌ 33 π 3 = πΌ 11 β πΌ 22 π 1 π 2
4
Eulerβs Equations β No Torques, I11=I22
πΌ 11 π 1 = πΌ 11 β πΌ 33 π 2 π 3 πΌ 22 π 2 = πΌ 33 β πΌ 11 π 3 π 1 πΌ 33 π 3 =0 π 3 is a constant π 1 = πΌ 11 β πΌ 33 πΌ 11 π 2 π 3 β‘ Ξ© π π 2 π 2 =β πΌ 11 β πΌ 33 πΌ 11 π 3 π 1 β‘ βΞ© π π 1 π 2 =β Ξ© π π 1 =β Ξ© π 2 π 2
5
Eulerβs Equations β No Torques, I11=I22 In the body axes:
π = π 0 cos Ξ© π π‘ β π 0 sin Ξ© π π‘ π 3 πΏ = πΌ 11 π 0 cos Ξ© π π‘ β πΌ 11 π 0 sin Ξ© π π‘ πΌ 33 π 3
6
In the space axes: Ξ© π = πΏ πΌ 11
Ξ© π = πΏ πΌ 11 π = π 0 sin Ξ± cos Ξ© π π‘ π 0 sin πΌ sin Ξ© π π‘ π 0 cos πΌ π 3 = sin π cos Ξ© π π‘ sin π sin Ξ© π π‘ cos π Prolate object: Ξ©b<0, Ξ©s>0
7
Example football.nb
8
Constants of the Motion, No Torque
πΏ = πΌ 11 π 0 cos Ξ© π π‘ β πΌ 11 π 0 sin Ξ© π π‘ πΌ 33 π 3 in body, has constant length Ξ© π = πΌ 11 β πΌ 33 πΌ 11 π 3 π 3 is constant πΏ in space is constant πΏ π§ is constant cos π= πΏ π§ /πΏ so ΞΈ is constant cos πΌ= π π§ /π so Ο is constant
9
Example HW31 Answers.nb
10
Unit Vectors π β² 3 = π 3 = sin π cos π π₯ + sin π sin π π¦ + cos π π§
π β² 1 = cos π cos π π₯ + cos π sin π π¦ β sin π π§
11
Angular Velocities π is spin about the body 3-axis
π is tipping of the body 3-axis π is precession about the space z-axis π = π π§ + π π β² 2 + Ο π 3 π§ = π 3 cos π β π β² 1 sin π π =β π sin π π β² 1 + π π β² 2 +( Ο + π cos π ) π β² 3
12
Angular Momentum πΏ =β πΌ 11 π sin π π β² 1 + πΌ 22 π π β² 2
+ πΌ 33 ( Ο + π cos π ) π β² 3 πΏ 3 = πΌ 33 Ο + π cos π πΏ π§ = πΏ β π§ = πΌ 11 π sin 2 π+ πΏ 3 cos π β π = πΏ π§ β πΏ 3 cos π πΌ 11 sin 2 π For torque-free systems, Lz and L3 are constants, so π is also constant.
13
Kinetic Energy π= 1 2 πΌ 11 π 1 2 + 1 2 πΌ 22 π 2 2 + 1 2 πΌ 33 π 3 2
π= 1 2 πΌ 11 π πΌ 22 π πΌ 33 π 3 2 = 1 2 πΌ π 2 sin 2 π+ π πΌ Ο + π cos π 2
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.