Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter3 Pulse-Echo Ultrasound Instrumentation

Similar presentations


Presentation on theme: "Chapter3 Pulse-Echo Ultrasound Instrumentation"— Presentation transcript:

1 Chapter3 Pulse-Echo Ultrasound Instrumentation
윤성수

2 contents ▣ Pulse-Echo Ultrasound
□ Pulsing Characteristics and Duty Factor ▣ Instrumentation □ Beam former □ Pulse Transmitter □ Receiver ▣ Ultrasound scanning ▣ Scanners □ Linear array transducers □ Curvilinear array transducers □ Phased array transducers ▣ Frame rate and scanning speed limitations

3 Pulse-Echo Ultrasound
□ The Range Equation □ T : Pulse Echo travel time □ c : speed of ultrasound in target material

4 Pulse-Echo Ultrasound
□ Pulse Duration Pulse Duration↓ ⇒ Axial resolution↑ □ Pulse repetition period : Wait for Echo pulse PP↑ ⇒ frame rate ↓ □ Duty Factor

5 Instrumentation

6 Beam former

7 Beam former □ 구현 방식 ▶ Analog vs Digital
□ Beam steering and focusing (pulse delay sequence) ▶ transmit focusing ▶ dynamic focusing of received echo ▶ controls the beam direction

8 Beam former □ 구현 방식 ▶ Analog
①반사신호를 한 곳에 모으는 시간이 20~40ns로 편차가 커 선명한 의료영상 구현 어려움 ② 인체 한 부위의 초점 위치를 제외한 나머지 부위에 대해선 수신 focusing을 구현할 수 없음

9 Beam former □ 구현 방식 ▶ Digital Stable : external factor
(ex. temperature) ② programmability ③ wide range of signal frequency

10 Beam former □ Beam steering and focusing (pulse delay sequence)
▶ transmit focusing ▶ dynamic focusing of received echo ▶ controls the beam direction array transmitter focusing different time delay Transmit focusing

11 Beam former □ Beam steering and focusing (pulse delay sequence)
▶ transmit focusing ▶ dynamic focusing of received echo ▶ controls the beam direction different time delay array transducer same delayed signal focused signal reflector Dynamic focusing of received echo

12 Beam former □ Beam steering and focusing (pulse delay sequence)
▶ transmit focusing ▶ dynamic focusing of received echo ▶ controls the beam direction Controls the beam direction

13 Pulse transmitter

14 Pulse transmitter □ Pulse transmitter
▶ provide electrical signals for exciting transducer ① Transmit power ↑ ② Higher intensity sound wave ③ Higher amplitude echo signal ④ Appear brighter and weaker reflectors In the display But acoustical exposure to the patient↑

15 Pulse transmitter □ Pulse transmitter
▶ provide electrical signals for exciting transducer Low output power (MI is 0.2) High output power (MI is 0.8)

16 receiver

17 receiver □ Procedure of the receiver

18 amplify(Receiver) □ Preamplifier Boosts echo signals
protect the receiver from high-voltage □ problem : amplify noise

19 compensate(Receiver)
□ Gain adjustments ▶ Overall gain control : Increase amplification at all depths High gain Low gain

20 compensate(Receiver)
□ Gain adjustments ▶ Overall gain control : Increase amplification at all depths (위의 사진 transmit pulse, 아래사진 gain조절) Transmit pulse의 amplitude를 키우는 것과 같은 효과 하지만 인체에 미치는 영향이 없음 High gain Low gain

21 compensate(Receiver)
□ Gain adjustments ▶ Swept gain or TGC(time gain compensation) : Attenuation compensation depending depth

22 compensate(Receiver)
□ Gain adjustments ▶ Swept gain or TGC ▶ Slider bar TGC control

23 compensate(Receiver)
□ Gain adjustments ▶ 3-Knob TGC control Slider bar TGC와 3-knob TGC비교

24 compensate(Receiver)
□ Gain adjustments ▶ Internal time-varied gain : automatically set swept gain ▶ Lateral gain Lateral 반사파의 모양이 원형인 경우 거리에 따라 보상

25 compensate(Receiver)
□ Dynamic frequency tuning ▶ Higher frequency sound waves are attenuated more rapidly and penetrate less deeply than lower frequencies. 고주파수 성분은 깊게 침투할수록 attenuation이 심해져서 사라지게 되고 저주파수 성분만 남게 됨

26 compensate(Receiver)
□ Dynamic frequency tuning ▶ Higher frequency sound waves are attenuated more rapidly and penetrate less deeply than lower frequencies. ▶ shallow regions  higher frequencies deeper regions  lower frequencies

27 Dynamic range and compression(Receiver)
▶ Limited input signal amplitude range to respond effectively ▶ Threshold < Input signal < Saturation

28 Dynamic range and compression(Receiver)
□ Log compression ▶ Receiver : 100~120dB Memory : 40~45dB Monitor(contrast) : 20~30dB Log Compression

29 Dynamic range and compression(Receiver)
□ Log compression 신호의 amplitude가 조금만 변해도 log compression을 하게 되면 크기의 변화가 커지게 되므로 log compression을 하게 되면 명암이 더 커짐 ▶ Low dynamic range : High contrast High dynamic range : Low contrast

30 demodulation(Receiver)
▶ Convert the amplified echo signal into a single pulse Input signal → rectification → smoothing

31 Reject(Receiver) □ Reject
▶ reject eliminates both low level electronic noise and low level echoes

32 Reject(Receiver) □ Reject ▶ Adaptive threshold processing
Threshold 를 변화시켜 가며 적용하여 noise또는 작은 amplitude의 echo signal을 제거

33 Ultrasound scanning □ A – mode(amplitude mode)
▶ shows echo amplitude versus reflector distance ▶ only presents echo data from a single beam line(limited uses) Echo signal의 amplitude와 distance를 표현

34 Ultrasound scanning □ A – mode(amplitude mode)
▶ shows echo amplitude versus reflector distance ▶ only presents echo data from a single beam line(limited uses) ▶ ophthalmological applications 안과학에 응용

35 Ultrasound scanning □ B – mode(brightness mode)
▶ echo signals are converted to intensity-modulated dots ▶ brightness ∝ echo signal amplitude Echo signal이 클수록 점의 밝기가 커짐

36 Ultrasound scanning A모드와 B모드의 비교 A - mode B - mode

37 Ultrasound scanning □ M – mode(motion mode)
▶ by slowly sweeping a B-mode trace across a screen ▶ depth on one axis and time on an orthogonal axis B모드를 화면에 지나가면서 나타냄 가로축은 시간 세로축은 깊이

38 Ultrasound scanning ∆d ∆t □ M – mode(motion mode)
▶ velocity of a reflector is estimated from 가로축의 시간과 세로축의 거리로 움직이는 reflector의 움직임의 평균속도를 구할 수 있음 ∆d ∆t

39 Ultrasound b-mode scanning
□ Image build-up ▶ called 2-D image ▶ echoes are positioned along a line that corresponds to the beam axis B 모드를 이용하여 여려 방향에서 얻은 정보를 모아 하나의 화면에 나타내어 2-D image를 얻을 수 있음

40 scanners □ Linear array transducers
▶ small rectangular elements lined up side by side ▶ parallel beam line 작은 element를 옆으로 붙인 것이 linear array 평행한 빔으로 반향 정보를 얻어냄

41 scanners □ Linear array transducers
▶ small rectangular elements lined up side by side 뼈(acoustic impedance가 매우 큼)는 잘 통과하지 못함

42 scanners □ Convex array transducers
▶ same principles as a linear array ▶ beam lines are not parallel, emerge at different angles Convex array는 곡면으로 이루어진 probe entrance window에 element배열 따라서 빔 라인은 평행하지 않고 다른 각으로 퍼져나감

43 scanners □ Convex array transducers
▶ larger imaged field than linear array 넓은 범위를 볼 수 있어 복부 등 넓은 범위에 응용

44 scanners □ Phased array transducers
▶ electronically steered at various angles ▶ electronic focusing Transmit pulse에 delay를 다르게 주어 beam steering 가능 Beam steering과 focusing 모두 적용 가능

45 scanners □ Phased array transducers
▶ through the intercostal (small entrance window) ▶ cardiac imaging 뼈는 초음파가 잘 통과하지 못함 Window entrance가 작은 phased array는 늑골사이로 빔을 쏘아 Steering하여 늑골 안의 모습을 관찰할 수 있음

46 scanners □ Mechanical scan
▶ two to four separate transducers positioned in different locations on the rim of rotating wheel 성인 심장의 동맥 속 하얀 화살표 관상 동맥 혈전(심장발작)

47 Frame rate and scanning speed limitations
□ Maximum frame rate ▶ D : depth C : speed of sound in tissue (1540 m/s) N : the number of lines

48 Frame rate and scanning speed limitations
□ Maximum frame rate ▶ D : depth C : speed of sound in tissue (1540 m/s) N : the number of lines D ↑ ⇒ Frame Rate↓ N↑ ⇒ Frame Rate↓ N↑ ⇒ Frame Rate↓ Smaller image size Resolution 유지


Download ppt "Chapter3 Pulse-Echo Ultrasound Instrumentation"

Similar presentations


Ads by Google