Presentation is loading. Please wait.

Presentation is loading. Please wait.

µi = (xX xi) / |X| =(1/57)x k 2kxi, (1/57)k 2kxxi,k

Similar presentations


Presentation on theme: "µi = (xX xi) / |X| =(1/57)x k 2kxi, (1/57)k 2kxxi,k"— Presentation transcript:

1 µi = (xX xi) / |X| =(1/57)x k 2kxi, (1/57)k 2kxxi,k
3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J L M N O P Q R S T U V 1 3 7 1 2 4 1 3 5 1 23 2 3 1 2 1 3 5 2 1 3 5 2 1 3 d e f g 9 a b c n o l m j k h i t u r s v w x y z A B C D E N F G H I J K L M q p O P Q R S T U V 1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000 µi = (xX xi) / |X| =(1/57)x k 2kxi, (1/57)k 2kxxi,k =(1/57)k 2krcPi,k for i=1 =(1/57)*(7*23 +24*22+35*21+23*20) =4.3 for i=2 =(1/57)*(22*23 +35*22+35*21+33*20) =7.35

2 story but they may have higher cost? ra,0=skin(a,1)
rx1,1,k 3 1 4 3 1 2 3 2 1 d e f g 9 a b c n o l m j k h i t u r s v w x y z A B C D E N F G H I J K L M q p O P Q R S T U V 1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000 K 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J L M N O P Q R S T U V 1 3 7 1 2 4 1 3 5 1 23 2 3 1 2 1 3 5 2 1 3 5 2 1 3 1 6 1 1 2 4 2 1 7 2 1 8 2 1 We note that the ring(a,d*(k-1),d*k) tell an even greater story but they may have higher cost? ra,0=skin(a,1) ra,k=ring(a,2k-1,2k) ring(a,d*2k-1,d*2k ) k=0... tell a great story on neighbors. (here, d=1) rf,a,k=ring(f,f-1a,2k-1,2k)

3 µ x y z A B t u C D r s E N F q G H I J K L M n o p O v l m P Q R j k
d e f g 9 a b c n o l m j k h i t u r s v w x y z A B C D E N F G H I J K L M q p O P Q R S T U V 1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000 K 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J L M N O P Q R S T U V 4 1 7 4 1 4 2 1 5 S 1 2 S 1 8 S 2 1 4 U 1 3 U 1 U 2 1

4 µ x y z A B t u C D r s E N F q G H I J K L M n o p O v l m P Q R j k
d e f g 9 a b c n o l m j k h i t u r s v w x y z A B C D E N F G H I J K L M q p O P Q R S T U V 1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000 K 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J L M N O P Q R S T U V T 1 6 T 1 6 T 2 1 V 1 7 V 1 4 V 2 1 6 v 1 v 1 v 2 1

5 x y z A B t u C D r s E N F q G H I J K L M n o p O v l m P Q R j k
d e f g 9 a b c n o l m j k h i t u r s v w x y z A B C D E N F G H I J K L M q p O P Q R S T U V 1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000 K 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J L M N O P Q R S T U V q 1 q 1 q 2 1 7 w 1 2 w 1 w 2 1 s 1 3 s 1 s 2 1

6 x y z A B t u C D r s E N F q G H I J K L M n o p O v l m P Q R j k
d e f g 9 a b c n o l m j k h i t u r s v w x y z A B C D E N F G H I J K L M q p O P Q R S T U V 1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000 K 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J L M N O P Q R S T U V 1 5 1 4 1 2 8 5 1 8 5 1 4 5 2 1 8 9 1 9 1 8 9 2 1

7 x y z A B t u C D r s E N F q G H I J K L M n o p O v l m P Q R j k
d e f g 9 a b c n o l m j k h i t u r s v w x y z A B C D E N F G H I J K L M q p O P Q R S T U V 1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000 K 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J L M N O P Q R S T U V d 1 8 d 1 9 d 2 1 4 h 1 8 h 1 9 h 2 1 4 j 1 00 9 j 1 9 j 2 1 9

8 x y z A B t u C D r s E N F q G H I J K L M n o p O v l m P Q R j k
d e f g 9 a b c n o l m j k h i t u r s v w x y z A B C D E N F G H I J K L M q p O P Q R S T U V 1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000 K 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J L M N O P Q R S T U V l 1 9 l 1 4 l 2 1 8 n 1 5 n 1 4 n 2 1 3

9 x y z A B t u C D r s E N F q G H I J K L M n o p O v l m P Q R j k
d e f g 9 a b c n o l m j k h i t u r s v w x y z A B C D E N F G H I J K L M q p O P Q R S T U V 1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000 K 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J L M N O P Q R S T U V I 1 2 I 1 3 I 2 1 7 G 1 8 G 1 5 G 2 1 7 E 1 7 E 1 2 E 2

10 µ x y z A B t u C D r s E N F q G H I J K L M n o p O v l m P Q R j k
d e f g 9 a b c n o l m j k h i t u r s v w x y z A B C D E N F G H I J K L M q p O P Q R S T U V 1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000 K 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J L M N O P Q R S T U V C 1 C 1 2 C 2 1 5 x 1 5 x 1 3 x 2 1 7

11 TV-countours bounded by isobars gaps of at
d e f g 9 a b c n o l m j k h i t u r s v w x y z A B C D E N F G H I J K L M q p O P Q R S T U V 1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000 K 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J L M N O P Q R S T U V 1 m 1 4 T 1 3 M 1 9 H 1 8 F 1 7 C 1 8 x 1 9 1 2 q 1 s 1 4 u 1 x TVX gap p P Q O m o S T R k U l i K L J M V I n g h j f H G e c N v b F E d a D C z A y B x q r t w s u12257 57*1 57*2 57*3 57*4 57*5 57*6 57*7 TV-countours bounded by isobars gaps of at least 57*radial_distance_from_=(7.4, 4.3) 57*7 57*8 57*9 57*11 57*14 57*15

12 TVX

13


Download ppt "µi = (xX xi) / |X| =(1/57)x k 2kxi, (1/57)k 2kxxi,k"

Similar presentations


Ads by Google