Presentation is loading. Please wait.

Presentation is loading. Please wait.

Section 9.1 Day 2 Graphing Quadratic Functions

Similar presentations


Presentation on theme: "Section 9.1 Day 2 Graphing Quadratic Functions"β€” Presentation transcript:

1 Section 9.1 Day 2 Graphing Quadratic Functions
Algebra 1

2 Learning Targets Define and identify a quadratic function in standard form Identify a parabola shape and graph which is unique to the quadratic function Define and identify the axis of symmetry, vertex, number of zeros, domain and range of a quadratic graph Identify if the quadratic function has a graph with a maximum or a minimum Graph a quadratic function using a table

3 Recall: Standard Form Standard Form: π‘Ž π‘₯ 2 +𝑏π‘₯+𝑐 Graphing Procedure:
Find the vertex π‘₯=βˆ’ 𝑏 2π‘Ž Fill in a 5 point table with the vertex as the center Plot the points Confirm the parabola shape

4 Vertex Form Vertex Form: 𝑦=π‘Ž π‘₯βˆ’β„Ž 2 +π‘˜ Graphing Procedure:
Identify the vertex: (β„Ž, π‘˜) Fill in a 5 point table with the vertex as the center Plot the points Confirm the parabola shape

5 Example 1: Graphing 𝒙 𝒇(𝒙) 2 5 3 4 1 6 𝒙 𝒇(𝒙) Graph 𝑓 π‘₯ = π‘₯βˆ’4 2 +1
Vertex: (4, 1) 𝒙 𝒇(𝒙) 2 5 3 4 1 6 𝒙 𝒇(𝒙)

6 Example 1: Identifying Axis of Symmetry: Vertex: # of Zeros:
π‘₯=4 Vertex: (4, 1) # of Zeros: 0 (x-intercepts) Maximum/Minimum: Minimum Domain: All Real Numbers Range: 𝑦β‰₯1

7 Example 2: Graphing 𝒙 𝒇(𝒙) βˆ’3 βˆ’6 βˆ’2 βˆ’1 2 1 𝒙 𝒇(𝒙)
Vertex: (βˆ’1, 2) 𝒙 𝒇(𝒙) βˆ’3 βˆ’6 βˆ’2 βˆ’1 2 1 𝒙 𝒇(𝒙)

8 Example 2: Identifying Axis of Symmetry: Vertex: # of Zeros:
π‘₯=βˆ’1 Vertex: (βˆ’1, 2) # of Zeros: 2 (x-intercepts) Maximum/Minimum: Maximum Domain: All Real Numbers Range: 𝑦≀2

9 Example 3: Graphing 𝒙 𝒇(𝒙) 8 1 βˆ’1 2 βˆ’4 3 4 𝒙 𝒇(𝒙)
Vertex: (2, βˆ’4) 𝒙 𝒇(𝒙) 8 1 βˆ’1 2 βˆ’4 3 4 𝒙 𝒇(𝒙)

10 Example 3: Identifying Axis of Symmetry: Vertex: # of Zeros:
π‘₯=2 Vertex: (2,βˆ’ 4) # of Zeros: 2 (x-intercepts) Maximum/Minimum: Minimum Domain: All Real Numbers Range: 𝑦β‰₯βˆ’4

11 Intercept Form Intercept Form: 𝑦=π‘Ž(π‘₯βˆ’π‘)(π‘₯βˆ’π‘ž) Graphing Procedure:
Identify the vertex: π‘₯= 𝑝+π‘ž 2 Identify the Intercepts: 𝑝,0 , (π‘ž,0) Plot the points Confirm the parabola shape

12 Example 1: Graphing 𝒙 𝒇(𝒙) 2 βˆ’4 βˆ’1 βˆ’9 𝒙 𝒇(𝒙) Graph 𝑓 π‘₯ =(π‘₯βˆ’2)(π‘₯+4)
Intercepts: 2, 0 , βˆ’4,0 Vertex: (βˆ’1, βˆ’9) 𝒙 𝒇(𝒙) 2 βˆ’4 βˆ’1 βˆ’9 𝒙 𝒇(𝒙)

13 Example 1: Identifying Axis of Symmetry: Vertex: # of Zeros:
π‘₯=βˆ’1 Vertex: (βˆ’1,βˆ’9) # of Zeros: 2 (x-intercepts) Maximum/Minimum: Minimum Domain: All Real Numbers Range: 𝑦β‰₯βˆ’9

14 Example 2: Graphing 𝒙 𝒇(𝒙) 3 βˆ’2 1 2 6 1 4 𝒙 𝒇(𝒙)
Vertex: ,6 1 4 Intercepts: 3, 0 , (βˆ’2,0) 𝒙 𝒇(𝒙) 3 βˆ’2 1 2 6 1 4 𝒙 𝒇(𝒙)

15 Example 2: Identifying Axis of Symmetry: Vertex: # of Zeros:
π‘₯= 1 2 Vertex: ( 1 2 ,6 1 4 ) # of Zeros: 2 (x-intercepts) Maximum/Minimum: Maximum Domain: All Real Numbers Range: 𝑦≀6 1 4

16 Example 3: Graphing 𝒙 𝒇(𝒙) 1 βˆ’3 βˆ’1 βˆ’4 𝒙 𝒇(𝒙) Graph 𝑓 π‘₯ =(π‘₯βˆ’1)(π‘₯+3)
Vertex: (βˆ’1, βˆ’4) Intercept: 1,0 , (βˆ’3,0) 𝒙 𝒇(𝒙) 1 βˆ’3 βˆ’1 βˆ’4 𝒙 𝒇(𝒙)

17 Example 3: Identifying Axis of Symmetry: Vertex: # of Zeros:
π‘₯=βˆ’1 Vertex: (βˆ’1,βˆ’ 4) # of Zeros: 2 (x-intercepts) Maximum/Minimum: Minimum Domain: All Real Numbers Range: 𝑦β‰₯βˆ’4


Download ppt "Section 9.1 Day 2 Graphing Quadratic Functions"

Similar presentations


Ads by Google