Download presentation
Presentation is loading. Please wait.
1
Section 9.1 Day 2 Graphing Quadratic Functions
Algebra 1
2
Learning Targets Define and identify a quadratic function in standard form Identify a parabola shape and graph which is unique to the quadratic function Define and identify the axis of symmetry, vertex, number of zeros, domain and range of a quadratic graph Identify if the quadratic function has a graph with a maximum or a minimum Graph a quadratic function using a table
3
Recall: Standard Form Standard Form: π π₯ 2 +ππ₯+π Graphing Procedure:
Find the vertex π₯=β π 2π Fill in a 5 point table with the vertex as the center Plot the points Confirm the parabola shape
4
Vertex Form Vertex Form: π¦=π π₯ββ 2 +π Graphing Procedure:
Identify the vertex: (β, π) Fill in a 5 point table with the vertex as the center Plot the points Confirm the parabola shape
5
Example 1: Graphing π π(π) 2 5 3 4 1 6 π π(π) Graph π π₯ = π₯β4 2 +1
Vertex: (4, 1) π π(π) 2 5 3 4 1 6 π π(π)
6
Example 1: Identifying Axis of Symmetry: Vertex: # of Zeros:
π₯=4 Vertex: (4, 1) # of Zeros: 0 (x-intercepts) Maximum/Minimum: Minimum Domain: All Real Numbers Range: π¦β₯1
7
Example 2: Graphing π π(π) β3 β6 β2 β1 2 1 π π(π)
Vertex: (β1, 2) π π(π) β3 β6 β2 β1 2 1 π π(π)
8
Example 2: Identifying Axis of Symmetry: Vertex: # of Zeros:
π₯=β1 Vertex: (β1, 2) # of Zeros: 2 (x-intercepts) Maximum/Minimum: Maximum Domain: All Real Numbers Range: π¦β€2
9
Example 3: Graphing π π(π) 8 1 β1 2 β4 3 4 π π(π)
Vertex: (2, β4) π π(π) 8 1 β1 2 β4 3 4 π π(π)
10
Example 3: Identifying Axis of Symmetry: Vertex: # of Zeros:
π₯=2 Vertex: (2,β 4) # of Zeros: 2 (x-intercepts) Maximum/Minimum: Minimum Domain: All Real Numbers Range: π¦β₯β4
11
Intercept Form Intercept Form: π¦=π(π₯βπ)(π₯βπ) Graphing Procedure:
Identify the vertex: π₯= π+π 2 Identify the Intercepts: π,0 , (π,0) Plot the points Confirm the parabola shape
12
Example 1: Graphing π π(π) 2 β4 β1 β9 π π(π) Graph π π₯ =(π₯β2)(π₯+4)
Intercepts: 2, 0 , β4,0 Vertex: (β1, β9) π π(π) 2 β4 β1 β9 π π(π)
13
Example 1: Identifying Axis of Symmetry: Vertex: # of Zeros:
π₯=β1 Vertex: (β1,β9) # of Zeros: 2 (x-intercepts) Maximum/Minimum: Minimum Domain: All Real Numbers Range: π¦β₯β9
14
Example 2: Graphing π π(π) 3 β2 1 2 6 1 4 π π(π)
Vertex: ,6 1 4 Intercepts: 3, 0 , (β2,0) π π(π) 3 β2 1 2 6 1 4 π π(π)
15
Example 2: Identifying Axis of Symmetry: Vertex: # of Zeros:
π₯= 1 2 Vertex: ( 1 2 ,6 1 4 ) # of Zeros: 2 (x-intercepts) Maximum/Minimum: Maximum Domain: All Real Numbers Range: π¦β€6 1 4
16
Example 3: Graphing π π(π) 1 β3 β1 β4 π π(π) Graph π π₯ =(π₯β1)(π₯+3)
Vertex: (β1, β4) Intercept: 1,0 , (β3,0) π π(π) 1 β3 β1 β4 π π(π)
17
Example 3: Identifying Axis of Symmetry: Vertex: # of Zeros:
π₯=β1 Vertex: (β1,β 4) # of Zeros: 2 (x-intercepts) Maximum/Minimum: Minimum Domain: All Real Numbers Range: π¦β₯β4
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.