Presentation is loading. Please wait.

Presentation is loading. Please wait.

Hour 12 Driven Harmonic Oscillators

Similar presentations


Presentation on theme: "Hour 12 Driven Harmonic Oscillators"β€” Presentation transcript:

1 Hour 12 Driven Harmonic Oscillators
Physics 321 Hour 12 Driven Harmonic Oscillators

2 Bottom Line Starting from rest, the system tries to oscillate at the natural frequency In time, it oscillates at the driving frequency The equation for a driven, damped oscillator: π‘₯ +2𝛽 π‘₯ + πœ”0 2 π‘₯= 𝐹(𝑑) π‘š ≑ 𝑓 0 cos πœ”π‘‘ The steady state solution is: π‘₯ 𝑑 =𝐴 cos (πœ”π‘‘βˆ’π›Ώ) FWHM of the resonance curve is approximately 2Ξ² So – what information can we obtain from the potential energy well? Bound vs. unbound, turning points, T(r).

3 Driven Oscillator The equation: π‘₯ +2𝛽 π‘₯ + πœ”0 2 π‘₯= 𝐹(𝑑) π‘š ≑𝑓(𝑑)
Let 𝑓 𝑑 = 𝑓 0 cos πœ”π‘‘ The oscillator wants to oscillate at πœ” 0 but the driver forces it to oscillate at πœ”. This leads to transient vs steady state behavior!

4 Example Driven_Osc.nb

5 Driven Oscillator π‘₯ +2𝛽 π‘₯ + πœ”0 2 π‘₯ =𝑓 0 cos πœ”π‘‘
We assume a solution something like π‘₯ 𝑑 =𝐴 cos (πœ”π‘‘βˆ’π›Ώ) But π‘₯ (𝑑)=βˆ’π΄πœ” sin (πœ”π‘‘βˆ’π›Ώ) So we employ a trick… The driving force is the real part of 𝑓 0 𝑒 π‘–πœ”π‘‘

6 Driven Oscillator 𝑧 +2𝛽 𝑧 + πœ”0 2 𝑧 =𝑓 0 𝑒 π‘–πœ”π‘‘
𝑧 +2𝛽 𝑧 + πœ”0 2 𝑧 =𝑓 0 𝑒 π‘–πœ”π‘‘ We assume a solution of the form 𝑧 𝑑 =𝐴 𝑒 βˆ’π‘–π›Ώ 𝑒 π‘–πœ”π‘‘ =𝐢 𝑒 π‘–πœ”π‘‘ This gives: (βˆ’ πœ” 2 +2π‘–π›½πœ”+ πœ”0 2 )𝐢 𝑒 π‘–πœ”π‘‘ =𝑓 0 𝑒 π‘–πœ”π‘‘ 𝐢= 𝑓 0 πœ”0 2 βˆ’ πœ” 2 +2π‘–π›½πœ”

7 Driven Oscillator Conclusion 1:
|𝐢| 2 = 𝐴 2 = 𝑓 ( πœ”0 2 βˆ’ πœ” 2 ) 2 +4 𝛽 2 πœ” 2

8 Driven Oscillator (βˆ’ πœ” 2 +2π‘–π›½πœ”+ πœ”0 2 )𝐴 𝑒 βˆ’π‘–π›Ώ 𝑒 π‘–πœ”π‘‘ =𝑓 0 𝑒 π‘–πœ”π‘‘
(βˆ’ πœ” 2 +2π‘–π›½πœ”+ πœ”0 2 )𝐴 𝑒 βˆ’π‘–π›Ώ 𝑒 π‘–πœ”π‘‘ =𝑓 0 𝑒 π‘–πœ”π‘‘ (βˆ’ πœ” 2 +2π‘–π›½πœ”+ πœ”0 2 )𝐴 =𝑓 0 𝑒 𝑖𝛿 πœ”0 2 βˆ’ πœ” 2 𝐴+2π‘–π›½πœ”π΄ =𝑓 0 cos 𝛿 +𝑖 𝑓 0 sin 𝛿 Real parts: πœ”0 2 βˆ’ πœ” 2 𝐴 =𝑓 0 cos 𝛿 Imaginary parts: 2π›½πœ”π΄= 𝑓 0 sin 𝛿 tan 𝛿= 𝑓 0 sin 𝛿 𝑓 0 cos 𝛿 = 2π›½πœ” πœ”0 2 βˆ’ πœ” 2

9 Driven Oscillator Conclusion 2: tan 𝛿 = 2π›½πœ” πœ”0 2 βˆ’ πœ” 2
And finally the steady state solution is: π‘₯ 𝑑 =𝐴 cos (πœ”π‘‘βˆ’π›Ώ)


Download ppt "Hour 12 Driven Harmonic Oscillators"

Similar presentations


Ads by Google