Download presentation
Presentation is loading. Please wait.
1
Hour 12 Driven Harmonic Oscillators
Physics 321 Hour 12 Driven Harmonic Oscillators
2
Bottom Line Starting from rest, the system tries to oscillate at the natural frequency In time, it oscillates at the driving frequency The equation for a driven, damped oscillator: π₯ +2π½ π₯ + π0 2 π₯= πΉ(π‘) π β‘ π 0 cos ππ‘ The steady state solution is: π₯ π‘ =π΄ cos (ππ‘βπΏ) FWHM of the resonance curve is approximately 2Ξ² So β what information can we obtain from the potential energy well? Bound vs. unbound, turning points, T(r).
3
Driven Oscillator The equation: π₯ +2π½ π₯ + π0 2 π₯= πΉ(π‘) π β‘π(π‘)
Let π π‘ = π 0 cos ππ‘ The oscillator wants to oscillate at π 0 but the driver forces it to oscillate at π. This leads to transient vs steady state behavior!
4
Example Driven_Osc.nb
5
Driven Oscillator π₯ +2π½ π₯ + π0 2 π₯ =π 0 cos ππ‘
We assume a solution something like π₯ π‘ =π΄ cos (ππ‘βπΏ) But π₯ (π‘)=βπ΄π sin (ππ‘βπΏ) So we employ a trickβ¦ The driving force is the real part of π 0 π πππ‘
6
Driven Oscillator π§ +2π½ π§ + π0 2 π§ =π 0 π πππ‘
π§ +2π½ π§ + π0 2 π§ =π 0 π πππ‘ We assume a solution of the form π§ π‘ =π΄ π βππΏ π πππ‘ =πΆ π πππ‘ This gives: (β π 2 +2ππ½π+ π0 2 )πΆ π πππ‘ =π 0 π πππ‘ πΆ= π 0 π0 2 β π 2 +2ππ½π
7
Driven Oscillator Conclusion 1:
|πΆ| 2 = π΄ 2 = π ( π0 2 β π 2 ) 2 +4 π½ 2 π 2
8
Driven Oscillator (β π 2 +2ππ½π+ π0 2 )π΄ π βππΏ π πππ‘ =π 0 π πππ‘
(β π 2 +2ππ½π+ π0 2 )π΄ π βππΏ π πππ‘ =π 0 π πππ‘ (β π 2 +2ππ½π+ π0 2 )π΄ =π 0 π ππΏ π0 2 β π 2 π΄+2ππ½ππ΄ =π 0 cos πΏ +π π 0 sin πΏ Real parts: π0 2 β π 2 π΄ =π 0 cos πΏ Imaginary parts: 2π½ππ΄= π 0 sin πΏ tan πΏ= π 0 sin πΏ π 0 cos πΏ = 2π½π π0 2 β π 2
9
Driven Oscillator Conclusion 2: tan πΏ = 2π½π π0 2 β π 2
And finally the steady state solution is: π₯ π‘ =π΄ cos (ππ‘βπΏ)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.